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Abstract

Visual attribute learning is a fundamental and chal-
lenging problem for image understanding. Consid-
ering the huge semantic space of attributes, it is
economically impossible to annotate all their pres-
ence or absence for a natural image via crowd-
sourcing. In this paper, we tackle the incom-
pleteness nature of visual attributes by introduc-
ing auxiliary labels into a novel transductive learn-
ing framework. By jointly predicting the attributes
from the input images and modeling the relation-
ship of attributes and auxiliary labels, the missing
attributes can be recovered effectively. In addition,
the proposed model can be solved efficiently in an
alternative way by optimizing quadratic program-
ming problems and updating parameters in closed-
form solutions. Moreover, we propose and inves-
tigate different methods for acquiring auxiliary la-
bels. We conduct experiments on three widely used
attribute prediction datasets. The experimental re-
sults show that our proposed method can achieve
the state-of-the-art performance with access to par-
tially observed attribute annotations.

1 Introduction

Attributes are semantic properties of objects which can be in-
ferred from visual images. Beyond traditional object recogni-
tion, attribute learning shows a promising way to natural im-
age understanding as it is able to provide fine-grained descrip-
tions. According to the definitions in previous works [Farhadi
et al., 2009; Russakovsky and Fei-Fei, 2010], attributes
usually contain rich semantic meanings, including color,
shape, texture and object parts. Recent research has veri-
fied that attributes can benefit many relevant computer vi-
sion tasks such as image retrieval [Kovashka er al., 2012;
Liang et al., 2016] and image captioning [Fang et al., 2015;
You et al., 2016]. Moreover, attribute learning makes it pos-
sible to do zero-shot classification [Lampert er al., 2014,
Jayaraman and Grauman, 2014] by modeling the correlation
between seen and unseen object categories.

Direct attribute prediction methods [Farhadi er al., 2009;
Lampert et al., 2014] train a binary classifier to predict each
individual attribute. Since the binary attribute classifiers are

trained independently, they fail to exploit the correlation in-
formation between attributes. By taking each attribute as one
subtask, [Jayaraman et al., 2014; Chen er al., 2014] for-
mulate attribute learning in a regularization-based multi-task
learning framework. In this way, the correlations between at-
tributes are well incorporated during the learning process. In
addition to leveraging the correlation within attributes, the re-
lationship between attributes and their associated object cat-
egories can also play a key factor for improving the discrim-
inative ability of attribute classifiers. [Wang and Ji, 2013;
Huang et al., 2015] propose to model a high order relation-
ship between attribute and object categories. In this way, they
can better recognize the attributes which are hard to predict
based only on visual appearances. Moreover, by modeling
the attribute classifier in a category-specific way [Liang et
al., 2015], different visual attribute manifestations across cat-
egories (e.g. attribute “fluffy” varies considerably between
dog and towel) can be characterized explicitly. Nevertheless,
all the above methods have assumed the training images with
complete attribute annotations.

Since multiple attributes may present on a single instance
and the space of attributes is almost infinite, exhaustively an-
notating all the presented attributes seems economically in-
feasible. The resulting incompleteness of attribute labels can
increase the difficulty of attribute prediction to a large extent.
Therefore, it is very necessary to build an attribute prediction
model that can tackle the incomplete problem. Although the
incomplete learning problem has received attention in multi-
label learning, there is almost no previous work to investigate
the problem for attribute learning. In this paper, we propose
to tackle the attribute learning problem with incomplete an-
notations. Our contributions are in four folds: First, we pro-
pose a novel transductive learning model to predict visual at-
tributes, which is able to exploit both labeled and unlabeled
images in the learning process. Second, we incorporate high-
level auxiliary labels into the transductive learning model via
label matrix completion to improve attribute prediction. By
enforcing the low rank property on the augmented label ma-
trix, the model can infer the missing attributes from both the
observed attributes and the augmented high-level auxiliary la-
bels such as auxiliary labels. Third, we investigate different
sources of high-level auxiliary labels, including both the ex-
isting object category annotations and the knowledge trans-
ferred from auxiliary large scale data sources. Finally, we



conduct experiments on the widely used datasets for attribute
learning. Experimental results demonstrate the effectiveness
of our proposed method on attribute learning with incomplete
annotations.

2 Related Work

A number of previous works have been proposed to tackle in-
complete label problem in the literature of multi-label learn-
ing. Common ways include taking the missing part of la-
bels as negative labels [Sun er al., 2010] or training on the
provided labels [Yu et al., 2014]. [Chen et al., 2013] pro-
posed a fast image tagging algorithm with only incomplete
tags for image annotation. It co-regularized both the partially
observed tags and image representation to recover the com-
plete tag labels within a joint convex loss function. [Wu et al.,
2013] proposed to infer the missing labels through label com-
pletion based on visual similarity and label co-occurrence.
Moreover, [Wu er al., 2015] proposed to complete the miss-
ing labels by further adding semantic hierarchy constraints.
They addressed the incomplete multi-label learning problem
by using a mixed graph to exploit the label dependencies ac-
cording to instance similarity, class co-occurrence, and se-
mantic hierarchy simultaneously. [Zhao and Guo, 2015] pro-
posed to solve incomplete multi-label learning in a semi-
supervised way by integrating a Laplacian manifold regular-
ization into the learning procedure. However, directly using
the above methods for incomplete attribute learning is not ef-
fective: Since the visual manifestations for a single attribute
vary across different object categories, it is difficult to exploit
the correlation between attributes when only considering vi-
sual appearance.

Transferring auxiliary labels from external knowledge
database is an effective way to boost the original learning
task. [Hwang and Sigal, 2014] used the taxonomy tree to
jointly embed attributes and super-categories into the same
space. [Frome er al., 2013] mapped the object category labels
to its corresponding semantic embedding. The embeddings of
object category labels are learned from textual data in an un-
supervised way. [Lu, 2016] proposed an unsupervised zero-
shot learning method to embed large scale object classes by
exploiting the outputs of a trained neural network. [Lu et al.,
2016] leveraged language priors from semantic word embed-
dings to improve visual relationship detection task. [Liang
et al., 2015] leveraged auxiliary object category labels to
model the high order relationship between image, object and
attribute. A common semantic space is constructed for em-
bedding the three types of information. Inspired by the above
methods, we propose different ways to acquire auxiliary la-
bels which are helpful for incomplete attribute learning.

3 Method

In this work, we consider learning image attribute predictors
in the following setting. Assume we have an input data ma-
trix X € R¥*", which contains n images, and each image is
represented as a d-dimensional feature vector. Without loss
of generality, we assume the first n, images, X!, from X are
labeled training instances and associated with an attribute in-
dicator matrix Y* € {0, 1}1*"¢, where 1 indicates the pres-

ence of the corresponding attribute among the total L pre-
defined attributes, while assuming the attribute indicator ma-
trix Y* € {0, 1}LX"“ for the rest n,, (such that n = ny+n,,)
images, X", is unobserved and needs to be predicted. Thus
overall we have a partially observed attribute-based label in-
dicator matrix Y = [Y?,Y"]. Below we present a novel
transductive learning method for attribute prediction, which is
able to exploit auxiliary labels and can be naturally extended
to handle incomplete attribute annotations.

3.1 Attribute Learning with Auxiliary Labels

Though attribute learning can be tackled as a standard label
prediction problem, the nature of visual attributes enables the
existence of related auxiliary label categories on the same im-
ages beyond the attribute labels. For example, the object cat-
egories can be a natural set of auxiliary labels that can be use-
ful for attribute label prediction. Such auxiliary labels and the
target attribute labels can typically present strong correlation
patterns and dependence relationships. We hence propose a
novel transductive learning model that not only exploits both
labeled images and unlabeled images for attribute prediction,
but also integrates auxiliary labels into the learning process.

In particular, we assume there is a set of L auxiliary labels,
and the prediction information on these auxiliary labels for
all the images can be encoded into a matrix Z € [0, 1]E*™,
and we formulate our transductive learning into the following

framework:
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where f(-; W) denotes the attribute prediction function with
model parameter W, and L(+, ) denotes the attribute predic-
tion loss function; ||-|| » denotes the Frobenius norm and |||,
denotes the nuclear norm; « and /3 are trade-off parameters.
The nuclear norm enforces the low-rank property over the M
matrix. Together with the second term of the objective func-
tion, by pushing the augmented label matrix to be close to a
low-rank matrix, we aim to capture the linear correlations be-
tween the augmented labels and infer the unobserved labels
such as Y from the observed ones such as Z. The proposed
framework is expected to integrate information from both the
input matrix X through the prediction function f and the aug-
mented label matrix through the low-rank regularization to
enhance attribute prediction.

The nuclear norm regularization nevertheless is non-
smooth. To entail a simple learning procedure, we fur-
ther exploit a well known identity and encode the low-rank
property by introducing two low-dimensional matrices, U €
RIALIXm and V € R™ ™ (m < min(L + L,n)), and re-
placing M with M = UV . This leads to the following
learning formulation:
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Figure 1: The proposed framework for incomplete attribute
learning. It can integrate both observed attribute labels and
auxiliary labels for attribute prediction. The red part of Y
denotes the unlabeled part.
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3.2 Learning with Incomplete Attribute Labels

As aforementioned, complete attribute annotations are typ-
ically difficult to obtain, while incomplete attribute annota-
tions are prevalent. In this case, our label indicator matrix Y¢
for the labeled training images is not completely observed.
Hence both Y* and part of Y* contain missing labels or un-
observed entries. Here we use a mask matrix £2 € {0, 1}£*"
to indicate the observation status of the corresponding entries
of Y. Our proposed transductive learning model above nev-
ertheless can be naturally extended to handle learning with
incomplete attribute labels by learning the label matrix for all
unobserved entries, which leads to the following formulation:

2
«

min  L(f(X;W),Y) + -
W,Y, U,V 2

B 2 2 Y 2
+ 510 +1VIE) + 5 Wk,
s.t. QOY:QOY;

Z

LR

F

3

0<Y <1

where o denotes the element-wise matrix multiplication. The
equality constraints preserve the observed labels in the given
label matrix Y. Ideally, our attribute prediction matrix Y
should be an indicator matrix, i.e., Y € {0,1}£%". To fa-
cilitate convenient optimization, here we relaxed the integer
constraints into a continuous range between 0 and 1. The
overall learning framework is illustrated in Fig. 1.

In this learning scenario, the low-rank regularization
over the augmented label matrix can help to infer the
missing attribute labels by exploiting the linear correla-
tions/dependencies between auxiliary labels and attribute la-
bels. For example, by taking the object categories as auxiliary
labels, we can infer the attribute “ear” with a high probability
if we have already known the object is “cat” with the attribute

“head” present. We can not do such reasoning if the object is
“bird” because the ear is not visible on the head part of birds
under most circumstances.

3.3 Optimization

To obtain a concrete learning problem, we propose to use a
linear prediction function f and squared loss function £(-, -):

(W), ¥) = [wix -y )

With this loss function, the learning model in Eqn. (3) is
a joint minimization problem over four variables: Y, W, U
and V. The objective function is convex in each variable
while keeping the other variables fixed. Therefore, we pro-
pose to solve this optimization problem using an alternating
optimization procedure.

We first initialize W and Y by training a linear regression
model to predict the partially observed attribute labels:

(W, W.) = argminyg . Hno ([W;WZ]T FZ(} - Y) i

F
Y=(1-9)0c[W;W.]' [X;Z]+Q0Y,

(&)
where W, is the parameter matrix for predicting the auxiliary
labels which is only used during the initialization stage. We
used the auxiliary labels as inputs in order to achieve a better
initialization of Y. We then initialize U and V by performing
SVD on the augmented label matrix [Y; Z] =PXQT, such
that

U = 13:,1:171212 V= Q:,llmzlé:m,lzm' ©)

Given these initialization values, we iteratively update the
four variables and in each iteration we perform the follow-
ing two steps. First, given the current value of the parameter
matrices W, U and V, we optimize Y in a row-wise man-
ner. The i*" row of Y is updated by solving the following
subproblem:

m,l:m>
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s.t. Qi’; o ?i,: = Qiy; o Yiy;; 0 < Yi,; < 1
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The above formulation is a constrained quadratic program-
ming problem which can be solve efficiently using a standard
quadratic solver. Second, given fixed Y, we use the following

closed-form updates for W, U and V:
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This learning process will be stopped if no performance
gain is further obtained on the validation set. The overall op-
timization procedure is summarized in Alg. 1.



Algorithm 1 Optimization procedure

Input: X, Y,Z,Q; o, 3,vand m

Initialization:
Initialize W, Y using Eqn. (5).
Initialize U, V using Eqn. (6).

repeat
Update Y=Y by solving Eqn. (7) with fixed W, U and V
Update W, U and V using Eqn. (8) with fixed Y

until no further performance gain

3.4 Mining Auxiliary labels

In this section, we investigate different types of auxiliary la-
bels such as using human annotated category labels and trans-
ferring auxiliary labels from external knowledge database.

Human Annotated Object Categories

In many tasks, object category annotations are usually avail-
able in the training data. Moreover, from the presence proba-
bility of the pre-defined attributes calculated with images be-
longing to the same category, as shown in Fig. 2, we found
that images from similar object categories usually share more
common attributes. Therefore, we first investigate using ob-
ject categories as auxiliary labels to infer the missing part of
attributes. In this case, Z is a sparse matrix with only one
non-zero element for each column.

For conventional attribute learning problem, the object cat-
egory annotations for unseen data are usually not observed.
Therefore, we choose to train a category prediction model
first by using the category supervision of the seen data. Then
the learned model is used to produce the auxiliary category la-
bels for the unseen data as Z". Here a ridge regression model
is trained using the data X! with known object category anno-
tations Z¢ and the annotations for X“ can be then produced
as following:

z' = Z'X! (X'X!" 4+ D)X, ©)

where A is the hyper parameter for the L, model parameter
regularization in a linear regression model. The auxiliary ma-
trix in Eqn. (3) can be formed as Z = [Zl, Z“] .

Knowledge Transferring from External Database

In addition to using human annotated category labels, we
also investigate auxiliary labels from the external dataset. In
particular, we propose to use Large Scale Visual Recogni-
tion Challenge 2012 (ILSVRC 2012) [Russakovsky er al.,
2015] as the external database. It contains 1.2 million im-
ages and 1000 object categories. We consider the ILSVRC
2012 dataset as the source domain and the dataset for attribute
learning as the target domain. Only part of the categories
defined in the target domain may appear in the source do-
main. By using a base model (e.g. AlexNet [Krizhevsky et
al., 2012]) pre-trained on ILSVRC 2012, we can extract the
category prediction S € R¢*” for all the images X in the
target domain, where ¢ = 1000 denotes the number of source
domain object categories and the sum of each column of S
equals to one. Since the source domain contains much more
object categories than the target domain, it is not efficient to
directly use all the posterior probabilities as auxiliary labels.

aPascal, P(attributelcategory)
u

H

Figure 2: The presence probability of attributes for differ-
ent object categories on aPascal and aYahoo datasets (Yellow
means high probability).

Therefore, we propose the following two ways to make full
use of the external knowledge.

Semantic Pooling. We first propose Semantic Pooling to
select the most relevant object categories from the source
domain as the auxiliary labels for attribute learning. By
summing up the presence probabilities of each source do-
main object category on the target domain images, such as
S; = >;S;. we can find the sum probabilities demon-
strate a long-tail distribution which means only a small pro-
portion of object categories from the source domain are rele-
vant to the target dataset. Therefore, we propose to pool the
most relevant object categories as the auxiliary labels. We
use R = {j|S; > t} to denote the indices of the selected
object categories, where t is the threshold for category selec-
tion. Then we can produce the auxiliary category label matrix
as Z = S(R,:) and further normalize Z to keep each column
sum up to one.

Semantic Propagation. Instead of only using part of the
object categories of the source domain, we also try to di-
rectly propagate the posterior probabilities of all the source
object categories to the target object categories. We model
the similarity between the object categories of the source do-
main and target domain using WordNet hierarchy [Fellbaum,
1998]. We denote the i*" object in the source domain and
the j** object in the target domain as OF and O respec-
tively. The similarity of the two categories is measured by
the Wu-Palmer Similarity [Bird et al., 2009]. Tt is based
on the depth of the two senses in the taxonomy and their
Least Common Subsumer, and is calculated as (O3, O}) =
2+ Depth(LCS(03, 0f))/(Depth(OF)+ Depth(O%)). The
propagation matrix can then be constructed as following:

K (02, 0%)?
T - exp(pk (0%, 0%)?) 10)

S p_ exp(pk (0, 04)2)

where p is a parameter to be specified. The auxiliary label
matrix can be obtained as Z = T 'S by propagating the pos-
terior probabilities from source domain to target domain.




Table 1: Detailed information for the datasets.

Dataset #1images # attributes # objects

aPascal 12785 64 20

aYahoo 2644 47 12
Imagenet attribute 9600 25 384

4 Experiments
4.1 Experimental Setting

Datasets. We conducted experiments on three real-world
datasets for attribute learning. aPascal [Farhadi et al., 2009]
contains 6430 training images and 6355 testing images from
Pascal VOC 2008 challenge. Each image comes from twenty
object categories and is annotated with 64 binary attribute
labels. aYahoo [Farhadi er al., 2009] contains 2644 images
belonging to twelve object categories. Each image is anno-
tated with the same 64 binary attributes as the aPascal dataset.
By discarding the attributes with no positive data, we finally
get 47 attributes to conduct experiments. INA (ImageNet At-
tributes [Russakovsky and Fei-Fei, 2010]) contains 9,600 im-
ages across 384 categories. Each image is annotated with 25
binary attributes. The information about the three datasets are
summarized in Table 1.
Experimental Setup. For the aPascal dataset, we use the
default {train, test} split and separate half the training data
for validation. For aYahoo and INA, we randomly split the
dataset into three subsets with equal size for training, vali-
dating and testing. We used the Convolutional Neural Net-
works (CNN) [Donahue et al., 2014] to extract 4096 DeCAF
features for each image within the provided bounding box
area. The performance of attribute predictors are measured
by mAUC (mean Area Under ROC) and mAP (mean Aver-
age Precision) to reflect the average performance of all the
attributes. To simulate the incomplete attribute learning set-
ting, we randomly used {10, 20, 30, 40, 50} percent of the an-
notated labels for model training. We compared all methods
using the same data setting, randomly sampled the observed
attribute labels and repeated each experiment five times.
Comparison Methods. In the experiments, we compare
the proposed approach with the following methods: (1) the
mixed graph method for multi-label learning with missing
labels (ML-MG) [Wu et al., 2015]; (2) the unified multi-
plicative framework for attribute Learning (UMF) [Liang et
al., 2015]; (3) the concatenation methods with multiple input
information (Concat); and (4) the baseline binary relevance
method (BR). The first two methods are state-of-the-art meth-
ods for multi-label learning with incomplete labels and visual
attribute learning respectively. ML-MG incorporates instance
level similarity and label dependencies to handle missing la-
bels. UMF integrates object recognition into conventional at-
tribute learning model in a multiplicative way. The Concat
method also exploits object labels; it concatenates the image
features and the auxiliary object labels together as the input
data. Comparing with UMF, Concat leverages multiple in-
formation in an additive way. BR is a widely used method
for multi-label classification. We independently train logistic
regression model for each binary attribute for BR.

We used the open-source code of ML-MG and UMF to
conduct the experiments. For all the methods, we conducted

parameter selection based on the performance on the valida-
tion set. For our proposed approach, we select the trade-off
parameters o from {1072;107!;1;10; 100}, select 3 from
{1075;107%;1073; 1072} while setting 3 and ~y to be equal.

4.2 Experiment Results

Incomplete Attribute Learning

In this section, we take human annotated object categories as
the auxiliary labels. We use the ground-truth category labels
for seen data and acquire object category prediction for un-
seen data based on Eqn. (9). From the results in Fig. 3, we
can see that the approaches integrated with auxiliary labels
(UMF, Concat and the proposed method) perform better than
the other methods especially when the observed attribute la-
bels are rare. This demonstrates the effectiveness of using
auxiliary labels on attribute prediction. By comparing differ-
ent ways for leveraging auxiliary labels, we find that Con-
cat works not very effectively since it trends to fall behind
BR on aPascal and aYahoo with increasing number of ob-
served attribute labels. The main difference between Con-
cat and our proposed method is Concat uses the auxiliary
labels to directly infer the missing part of attributes with-
out considering the observed part of attributes. Compared
with Concat and the proposed method, UMF works well on
aPascal and aYahoo but fails on INA which has many more
categories. ML-MG seems to not perform well on attribute
learning tasks. The main reason can be that attributes do not
have the semantic label hierarchy such as “animal—horse”
and “plant—grass” which are commonly presented in multi-
label learning problem. Moreover, the co-occurrence of at-
tributes is hard to exploit if the relationship with attributes
and objects are not well considered.

Our proposed approach constantly outperforms the other
comparison methods based on the mAP evaluation metric on
all the three datasets especially when only a small portion
of attribute labels are observed. By observing 10 percent of
attributes on the aPascal dataset, our proposed method im-
proves the state-of-the-art performance about 2% according
to both mAP and mAUC. For the aYahoo dataset, we achieve
the best mAP performance but falls behind UMF based on
mAUC. Since the presences of most attributes are much less
than their absences, attribute learning usually suffers from
data imbalance problem. Referring to [Davis and Goadrich,
2006], using an evaluation metric of Precision-Recall curve
is more reasonable than the ROC curve to measure the com-
parison methods on the imbalance learning task.

Mining Auxiliary Labels

We conduct experiments by taking advantage of the external
database. The source domain is specified to be the 1000 ob-
ject categories defined in ILSVRC 2012 dataset. We extract
the posterior probabilities of source domain object categories
on the input images using two base networks: AlexNet [Don-
ahue et al., 2014] and VGG-16 [Simonyan and Zisserman,
2014]. Then we use the two methods proposed in Sec. 3.4
to conduct the auxiliary label matrix Z. For semantic prop-
agation, we manually map the object categories from both
ILSVRC 2012 and the three benchmark datasets into the
WordNet hierarchy. Then we can measure the similarity be-
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Figure 3: The performance of different comparison methods on the three benchmark datasets with incomplete attribute labels.
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tween two arbitrary object categories and compute the propa-
gation matrix based on Eqn. (10).

We calculated the performance gain of using auxiliary la-
bels over the binary relevance method (BR). As shown in
Fig. 4, mining auxiliary labels is always helpful for learn-
ing from incomplete attributes. By comparing two methods
of generating auxiliary labels, Semantic Propagation (PG)
achieves better performance than Semantic Pooling (SP) on
aPascal and INA. This shows the effectiveness of leveraging
WordNet taxonomy. Comparing with using AlexNet as base
network, using VGG alway shows better performance. This is
reasonable as VGG achieves a lower error rate than AlexNet
on the ILSVRC 2012 dataset. We conducted the experiments
by setting different values of hyperparameters with observing
10% attributes on aPascal. For Semantic Pooling, we modify
the threshold to pool the top K object categories of source do-

main. As shown in Fig.5, the performance of Semantic Pool-
ing starts to drop when more object categories are involved as
auxiliary labels. For Semantic Propagation, choosing a larger
value for p can achieve better performance.

Comparing Fig. 3 and Fig. 4, the proposed method achieves
better performance by using human annotated object cate-
gories rather than mining auxiliary labels. The main rea-
son is part of the objects from target datasets are missing on
ILSVRC 2012 dataset though the latter contains many more
object categories. However, mining auxiliary labels is still
promising as it does not need any human annotations which
dramatically decreases the cost of labeling.

5 Conclusion

We proposed a novel transductive learning method by inte-
grating auxiliary labels for incomplete attribute learning. By
modeling the relationship of attributes and auxiliary labels,
the missing attributes can be recovered effectively. The pro-
posed model can be solved efficiently by alternatively opti-
mizing constrained quadratic programming problems and pa-
rameter updating in closed form solutions. In addition, we in-
vestigate different ways to acquire auxiliary labels. By taking
the auxiliary labels as the human annotated object category
labels, our proposed method can achieve the state-of-the-art
performance on three widely used datasets. Moreover, the
auxiliary labels transferred from a large scale dataset can also
improve the performance without adding extra human cost.

Acknowledgments

Research supported by China Scholarship Council (No.
201604910935), Natural Science Foundation of China (No.
61390515) and the Canada Research Chairs program.



References

[Bird et al., 2009] Steven Bird, Ewan Klein, and Edward
Loper. Natural language processing with Python: ana-
lyzing text with the natural language toolkit. ““ O’Reilly
Media, Inc”, 2009.

[Chen et al., 2013] Minmin Chen, Alice X Zheng, and Kil-
ian Q Weinberger. Fast image tagging. In Proc. of ICML,
pages 1274-1282, 2013.

[Chen et al., 2014] Lin Chen, Qiang Zhang, and Baoxin Li.
Predicting multiple attributes via relative multi-task learn-
ing. In Proc. of CVPR, pages 1027-1034. IEEE, 2014.

[Davis and Goadrich, 2006] Jesse Davis and Mark Goadrich.
The relationship between precision-recall and roc curves.
In Proc. of ICML, pages 233-240. ACM, 2006.

[Donahue et al., 2014] Jeff Donahue, Yangqing Jia, Oriol
Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell. Decaf: A deep convolutional activation
feature for generic visual recognition. In Proc. of ICML,
pages 647-655, 2014.

[Fang et al., 2015] Hao Fang, Saurabh Gupta, Forrest Ian-
dola, Rupesh K Srivastava, Li Deng, Piotr Dolldr, et al.
From captions to visual concepts and back. In Proc. of
CVPR, pages 1473-1482, 2015.

[Farhadi et al., 2009] Ali Farhadi, Ian Endres, Derek Hoiem,
and David Forsyth. Describing objects by their attributes.
In Proc. of CVPR, pages 1778-1785. IEEE, 2009.

[Fellbaum, 1998] Christiane Fellbaum. WordNet. Wiley On-
line Library, 1998.

[Frome et al., 2013] Andrea Frome, Greg S Corrado, Jon
Shlens, Samy Bengio, Jeff Dean, Tomas Mikolov, et al.
Devise: A deep visual-semantic embedding model. In
Proc. of NIPS, pages 2121-2129, 2013.

[Huang et al., 2015] Sheng Huang, Mohamed Elhoseiny,
Ahmed Elgammal, and Dan Yang. Learning hypergraph-
regularized attribute predictors. In Proc. of CVPR, pages
409417, 2015.

[Hwang and Sigal, 2014] Sung Ju Hwang and Leonid Sigal.
A unified semantic embedding: Relating taxonomies and
attributes. In Proc. of NIPS, pages 271-279, 2014.

[Jayaraman and Grauman, 2014] Dinesh Jayaraman and
Kristen Grauman. Zero-shot recognition with unreliable
attributes. In Proc. of NIPS, pages 3464-3472, 2014.

[Jayaraman et al., 2014] Dinesh Jayaraman, Fei Sha, and
Kristen Grauman. Decorrelating semantic visual attributes
by resisting the urge to share. In Proc. of CVPR, pages
1629-1636. IEEE, 2014.

[Kovashka et al., 2012] Adriana Kovashka, Devi Parikh, and
Kristen Grauman. Whittlesearch: Image search with rel-
ative attribute feedback. In Proc. of CVPR, pages 2973—
2980. IEEE, 2012.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Proc. of NIPS, pages
1097-1105, 2012.

[Lampert et al., 2014] Christoph H Lampert, Hannes Nick-
isch, and Stefan Harmeling. Attribute-based classification
for zero-shot visual object categorization. [EEE TPAMI,
36(3):453-465, 2014.

[Liang et al., 2015] Kongming Liang, Hong Chang,
Shiguang Shan, and Xilin Chen. A unified multiplicative
framework for attribute learning. In Proc. of ICCV, pages
2506-2514, 2015.

[Liang er al., 2016] Kongming Liang, Hong Chang,
Shiguang Shan, and Xilin Chen. Attribute conjunction
learning with recurrent neural network. In Proc. of
ECML-PKDD, pages 345-360. Springer, 2016.

[Lu efal.,2016] Cewu Lu, Ranjay Krishna, Michael Bern-
stein, and Li Fei-Fei. Visual relationship detection with
language priors. In Proc. of ECCV, pages 852-869.
Springer, 2016.

[Lu, 2016] Yao Lu. Unsupervised learning on neural net-

work outputs: with application in zero-shot learning. In
Proc. of IJCAIL 2016.

[Russakovsky and Fei-Fei, 2010] Olga Russakovsky and
Li Fei-Fei. Attribute learning in large-scale datasets. In
Proc. of ECCV Workshop, 2010.

[Russakovsky er al., 2015] Olga Russakovsky, Jia Deng,
Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. Ima-
geNet Large Scale Visual Recognition Challenge. 1JCV,
115(3):211-252, 2015.

[Simonyan and Zisserman, 2014] K. Simonyan and A. Zis-
serman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[Sun et al., 2010] Yu-yin Sun, Yin Zhang, and Zhi-hua Zhou.
Multi-label learning with weak label. In Proc. of AAAL
Citeseer, 2010.

[Wang and Ji, 2013] Xiaoyang Wang and Qiang Ji. A unified
probabilistic approach modeling relationships between at-
tributes and objects. In Proc. of ICCV, 2013.

[Wu et al., 2013] Lei Wu, Rong Jin, and Anil K Jain. Tag
completion for image retrieval. IEEE TPAMI, 35(3):716—
727,2013.

[Wu et al., 2015] Baoyuan Wu, Siwei Lyu, and Bernard
Ghanem. Ml-mg: multi-label learning with missing labels
using a mixed graph. In Proc. of ICCV, 2015.

[You ef al., 2016] Quanzeng You, Hailin Jin, Zhaowen
Wang, Chen Fang, and Jiebo Luo. Image captioning with
semantic attention. In Proc. of CVPR, pages 4651-4659,
2016.

[Yu et al., 2014] Hsiang-Fu Yu, Prateek Jain, Purushottam
Kar, and Inderjit S Dhillon. Large-scale multi-label learn-
ing with missing labels. In Proc. of ICML, pages 593-601,
2014.

[Zhao and Guo, 2015] Feipeng Zhao and Yuhong Guo.
Semi-supervised multi-label learning with incomplete la-
bels. In Proc. of IJCAI, pages 4062-4068. AAAI Press,
2015.



