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Gene Regulatory Networks

Genes do not work independently

I Gene expressions are regulated (control the amount and
timing of appearance of their functional products) to
achieve proper cell function

I The regulation mechanism forms a network—the gene
regulatory network
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Identifying gene regulatory networks helps gain insight
into biological function

Given availability of high-throughput microarray data

I mRNA expression levels of thousands of genes are
measured simultaneously

Raises an important, challenging task in computational
biology

I Learn gene regulatory networks from time-series gene
expression data
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Modeling Gene Regulatory Networks

Approaches proposed in the literature

I Linear models: linear differential equations [De Jong et al.,
2004; Chen et al., 2005]; sparse linear modeling [De Hoon et al.,
2003; Li et al., 2004]

I Boolean network models
I (Dynamic) Bayesian networks

I Prototype approach [Van Someren et al., 2000]
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Motivation

Difficulty:

I a few time-points for a large number of genes
I identifying regulators for each gene separately is error

prone

Biological assumption:

I genes with similar expression patterns are likely to be
co-regulated
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Idea

Idea:

I Identify common regulators for groups of genes with similar
expression profiles while still permitting individual
differences

Method: based on linear regression

I First, after rescaling the expression data into values
between 0 and 1, cluster the genes using k-means

I For each cluster, identify the regulatory relationships using
a novel combination of local and global feature selection
(regularization)
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Global Regularized Approach

Introduce the base linear regression model

Then address the following three issues

I Coping with Time Lags
I Local feature selection – permit individual differences
I Global feature selection – regulation Sharing
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Linear Modeling

I Given the time-series expression vector yj : n × 1 for the
j th target gene and the expression matrix Xj : n × k for its k
candidate regulators

I How well that yj can be predicted from Xj can be
determined by solving a linear regression

min
wj

‖Xjwj − yj‖
2
2

... jyXj n

k

w
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Time Lags

Problem

I Regulation does not occur instantaneously. There are
potential time lags between the expression of a regulator
and its downstream target genes.

time lag = T2 − T1

T2T1

Gene A

Gene B
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Time Lags

Solution: time shifting

I For a target gene j , the optimal shift between yj and the
profile xij of its i th candidate regulator can be computed by
aligning xij with yj

s∗
ij = arg min

s∈{0,1,2,3}
‖xij(1, ..., n − s) − yj(s + 1, ..., n)‖2

2
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Coping with Time Lags

I Compute the maximum shift: smax = maxi sij

I Truncate yj to obtain ỹj = yj(smax , ..., n)

I Apply the optimal shift to each column of Xj , and truncate
the columns to a common length based on smax . Finally
obtain a (n − smax ) × k time-lag aligned matrix Φj .

I The linear regression can then be written as

min
wj

‖Φjwj − ỹj‖
2
2
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Feature Selection

I Issue: the set of candidate regulators for a target gene is
much larger than its true regulator set

I Feature selection need to be conducted to discard the
irrelevant candidate regulators

min
wj

‖Φjwj − ỹj‖
2
2 + α‖wj‖1

Using L1 norm for regularization, many weights w
(corresponding to irrelevant candidate regulators) would be
set to 0
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Key contribution
Tackle the problem of the lack of time points by sharing
regulatory information across genes with similar
expression profiles

I Introduce a set of 0-1 valued global feature selection
variables η = {η1, ..., ηl}

>, corresponding to the common
candidate regulator set X = {x1, ..., xl}

I Globally regularized risk minimization:

min
η∈{0,1}l

min
w

∑

j

(

‖Φdiag(η)wj − ỹj‖
2
2 + α‖wj‖1

)

+ λu>
η (1)

where Φ is the aligned expression matrix for the candidate
regulators of the genes in the considered cluster
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Note that (1) has both global and local regularization terms
I the global regularization term λu>

η is an L0 norm
regularizer, aims to identify the common regulators for the
cluster genes by sharing regulatory information (thus with
more time points)

I the local L1 norm regularizer, α‖wj‖1, makes individual
choices of regulators

Hope to achieve more accurate regulator identification
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Optimization Procedure

I The min-min integer optimization problem (1) can be
relaxed into

min
η

min
w

∑

j

(

‖Φdiag(η)wj − ỹj‖
2
2 + α‖wj‖1

)

+ λu>
η

subject to 0 ≤ η ≤ 1

I Conduct the optimization in two alternating steps:
I minw: using quadratic programming or a fast grafting

algorithm
I minη: use a quasi-Newton BFGS method
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Experiments

Conduct experiments to identify cell cycle regulation networks
where the cell cycle genes are regulated by a set of
transcription activators

Experimental design

I Compare the proposed global regularization approach to
two extremes based on linear regression models:

I local regularization approach: use only the local L1 norm
regularizer to determine the regulators for each gene
separately

I prototype method: use only the global regularizer to identify
the common regulators for the whole cluster
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Synthetic Experiments

Goal
Simulate a cell cycle process controlled by a small number of
critical transcription factors (TFs) to gauge the potential
effectiveness of the proposed approach when the ground truth
is known

Setup
Define a 4-phase cell cycle where 10 TFs regulate the
expression levels of 212 genes (53 genes in each phase); 10
TFs are associated with the 4 phases with (3, 2, 3, 2) in each
phase; each gene/TF is regulated by one TF or the combination
of 2 TFs randomly selected from the TFs from the previous
phase in the cycle
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Synthetic Profile Generation

Data generation procedure

I Simulate the expression level for the TFs in a selected
phase for two complete cell cycles (16 time steps)

I Generate the expression profiles for the genes/TFs in the
next phase by a 2 time step delayed response (with
Gaussian noise) from the profiles of randomly selected one
or two TFs in the current phase

I Repeat this generating procedure for all phases in turn
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Synthetic Results
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Figure: Rows denote target genes in the synthetic experiment.
Columns denote candidate regulators (transcription factors).
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Synthetic Results

Results obtained using 10 clusters

Table: Results on synthetic data, predicting TF-based regulations.

Performance Local Prototype Global
comparison regularization method regularization
accuracy (%) 57.6 47.2 73.0
precision (%) 21.4 18.1 30.0
recall (%) 71.5 75.0 63.8
F-measure 33.0 29.2 40.8
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Yeast Cell Cycle Gene Regulation
Yeast cell cycle gene expression is known to be regulated by
nine cell cycle transcriptional activators: Mbp1, Swi4, Swi6,
Mcm1, Fkh1, Fkh2, Ndd1, Swi5 and Ace2 [Simon et al., 2001]

from http://web.wi.mit.edu/young/cellcycle/
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Yeast Cell Cycle Gene Regulation

I Experiments: Identify the 9 TFs based cell cycle
regulatory network

I Conduct experiments on a subset of 267 cell cycle genes
from Cho et al.’s data [Cho et al., 1998]

I Evaluate the performance on a subset of 127 genes for
which

I the confirmed regulatory information can be obtained from
previous literature [Simon et al., 2001; Iyer et al., 2001]

I or potential regulation relationships can be inferred from the
existing binding data [Iyer et al., 2001]
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Yeast Cell Cycle Results
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Figure: Rows denote target genes. Columns denote candidate
regulators (transcription factors).
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Yeast Cell Cycle Results

Results obtained using 15 clusters

Table: Results on the subset of the real yeast cell cycle gene
expression data, restricted to genes where TF-based regulation
information is known or can be inferred from other sources.

Performance Local Prototype Global
comparison regularization method regularization
accuracy (%) 57.8 55.4 73.9
precision (%) 22.3 21.2 35.7
recall (%) 47.5 48.0 43.4
F-measure 30.4 29.4 39.2
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Conclusion
By sharing regulation information across genes with similar
expression profiles, more time points can be used to predict the
common regulators, which leads to improved prediction quality

Future Work

I Consider incorporating other sources of biologically
relevant data, or other prior knowledge into network
induction

I Extend this feature selection strategy to solve other feature
selection problems in bioinformatics
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Thanks!
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