Learning Gene Regulatory Networks via Globally Regularized Risk Minimization

Yuhong Guo

Joint work with Dale Schuurmans

Department of Computing Science University of Alberta

September 16, 2007

ヘロト ヘ戸ト ヘヨト ヘヨト

Gene Regulatory Networks Learn Gene Regulatory Networks

Gene Regulatory Networks

Genes do not work independently

- Gene expressions are regulated (control the amount and timing of appearance of their functional products) to achieve proper cell function
- The regulation mechanism forms a network—the gene regulatory network

ヘロト ヘ戸ト ヘヨト ヘヨト

Gene Regulatory Networks Learn Gene Regulatory Networks

Identifying gene regulatory networks helps gain insight into biological function

Given availability of high-throughput microarray data

 mRNA expression levels of thousands of genes are measured simultaneously

Raises an important, challenging task in computational biology

 Learn gene regulatory networks from time-series gene expression data

< 日 > < 同 > < 回 > < 回 > < □ > <

Gene Regulatory Networks Learn Gene Regulatory Networks

Modeling Gene Regulatory Networks

Approaches proposed in the literature

- Linear models: linear differential equations [De Jong et al., 2004; Chen et al., 2005]; sparse linear modeling [De Hoon et al., 2003; Li et al., 2004]
- Boolean network models
- (Dynamic) Bayesian networks
- Prototype approach [Van Someren et al., 2000]

ヘロト ヘ戸ト ヘヨト ヘヨト

Idea Linear Modeling Coping with Time Lags Local Feature Selection Regulation Sharing

Motivation

Difficulty:

- a few time-points for a large number of genes
- identifying regulators for each gene separately is error prone

Biological assumption:

 genes with similar expression patterns are likely to be co-regulated

ヘロト ヘ戸ト ヘヨト ヘヨト

Idea Linear Modeling Coping with Time Lags Local Feature Selection Regulation Sharing

Idea

Idea:

 Identify common regulators for groups of genes with similar expression profiles while still permitting individual differences

Method: based on linear regression

- First, after rescaling the expression data into values between 0 and 1, cluster the genes using k-means
- For each cluster, identify the regulatory relationships using a novel combination of local and global feature selection (regularization)

ヘロト ヘ戸ト ヘヨト ヘヨト

Idea Linear Modeling Coping with Time Lags Local Feature Selection Regulation Sharing

Global Regularized Approach

Introduce the base linear regression model

Then address the following three issues

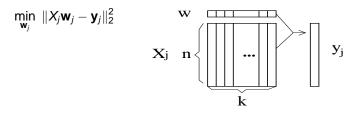
- Coping with Time Lags
- Local feature selection permit individual differences
- Global feature selection regulation Sharing

ヘロト ヘ戸ト ヘヨト ヘヨト

Idea Linear Modeling Coping with Time Lags Local Feature Selection Regulation Sharing

Linear Modeling

- Given the time-series expression vector y_j : n × 1 for the *j*th target gene and the expression matrix X_j : n × k for its k candidate regulators
- How well that y_j can be predicted from X_j can be determined by solving a linear regression



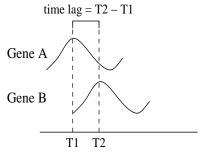
< ロ > < 同 > < 回 > < 回 > .

Idea Linear Modeling **Coping with Time Lags** Local Feature Selection Regulation Sharing

Time Lags

Problem

Regulation does not occur instantaneously. There are potential time lags between the expression of a regulator and its downstream target genes.



< □ > < 同 > < 回 > < 回 > < 回 >

Idea Linear Modeling **Coping with Time Lags** Local Feature Selection Regulation Sharing

Time Lags

Solution: time shifting

For a target gene j, the optimal shift between y_j and the profile x_{ij} of its *i*th candidate regulator can be computed by aligning x_{ij} with y_j

$$\mathbf{s}_{ij}^* = \arg\min_{s \in \{0,1,2,3\}} \|\mathbf{x}_{ij}(1,...,n-s) - \mathbf{y}_j(s+1,...,n)\|_2^2$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Idea Linear Modeling **Coping with Time Lags** Local Feature Selection Regulation Sharing

Coping with Time Lags

- Compute the maximum shift: $s_{max} = \max_i s_{ij}$
- Truncate \mathbf{y}_j to obtain $\tilde{\mathbf{y}}_j = \mathbf{y}_j(s_{max}, ..., n)$
- Apply the optimal shift to each column of X_j, and truncate the columns to a common length based on s_{max}. Finally obtain a (n - s_{max}) × k time-lag aligned matrix Φ_j.
- The linear regression can then be written as

$$\min_{\mathbf{w}_j} \|\Phi_j \mathbf{w}_j - \tilde{\mathbf{y}}_j\|_2^2$$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Idea Linear Modeling Coping with Time Lags Local Feature Selection Regulation Sharing

Feature Selection

- Issue: the set of candidate regulators for a target gene is much larger than its true regulator set
- Feature selection need to be conducted to discard the irrelevant candidate regulators

$$\min_{\mathbf{w}_j} \quad \|\Phi_j \mathbf{w}_j - \widetilde{\mathbf{y}}_j\|_2^2 + \alpha \|\mathbf{w}_j\|_1$$

Using L1 norm for regularization, many weights ${\bf w}$ (corresponding to irrelevant candidate regulators) would be set to 0

< 日 > < 同 > < 回 > < 回 > < □ > <

э.

Idea Linear Modeling Coping with Time Lags Local Feature Selection Regulation Sharing

Key contribution

Tackle the problem of the lack of time points by sharing regulatory information across genes with similar expression profiles

Introduce a set of 0-1 valued global feature selection variables η = {η₁,...,η_l}[⊤], corresponding to the common candidate regulator set X = {x₁,...,x_l}

Globally regularized risk minimization:

$$\min_{\boldsymbol{\eta} \in \{0,1\}^{I}} \min_{\mathbf{w}} \sum_{j} \left(\| \Phi \operatorname{diag}(\boldsymbol{\eta}) \mathbf{w}_{j} - \tilde{\mathbf{y}}_{j} \|_{2}^{2} + \alpha \| \mathbf{w}_{j} \|_{1} \right) + \lambda \mathbf{u}^{\top} \boldsymbol{\eta}$$
(1)

where Φ is the aligned expression matrix for the candidate regulators of the genes in the considered cluster

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Idea Linear Modeling Coping with Time Lags Local Feature Selection Regulation Sharing

Note that (1) has both global and local regularization terms

- the global regularization term λu^Tη is an L0 norm regularizer, aims to identify the common regulators for the cluster genes by sharing regulatory information (thus with more time points)
- ► the local L1 norm regularizer, α||w_j||₁, makes individual choices of regulators

Hope to achieve more accurate regulator identification

ヘロト ヘ戸ト ヘヨト ヘヨト

Idea Linear Modeling Coping with Time Lags Local Feature Selection Regulation Sharing

Optimization Procedure

The min-min integer optimization problem (1) can be relaxed into

$$\begin{split} \min_{\boldsymbol{\eta}} \min_{\mathbf{w}} & \sum_{j} \left(\| \Phi \textit{diag}(\boldsymbol{\eta}) \mathbf{w}_{j} - \tilde{\mathbf{y}}_{j} \|_{2}^{2} + \alpha \| \mathbf{w}_{j} \|_{1} \right) + \lambda \mathbf{u}^{\top} \boldsymbol{\eta} \\ \text{subject to} & \mathbf{0} \leq \boldsymbol{\eta} \leq \mathbf{1} \end{split}$$

- Conduct the optimization in two alternating steps:
 - min_w: using quadratic programming or a fast grafting algorithm
 - min_{η} : use a quasi-Newton BFGS method

ヘロト ヘ戸ト ヘヨト ヘヨト

Experiments

Conduct experiments to identify cell cycle regulation networks where the cell cycle genes are regulated by a set of transcription activators

Experimental design

- Compare the proposed global regularization approach to two extremes based on linear regression models:
 - local regularization approach: use only the local L1 norm regularizer to determine the regulators for each gene separately
 - prototype method: use only the global regularizer to identify the common regulators for the whole cluster

ヘロト ヘ戸ト ヘヨト ヘヨト

Synthetic Experiments Yeast Cell Cycle Experiments

Synthetic Experiments

Goal

Simulate a cell cycle process controlled by a small number of critical transcription factors (TFs) to gauge the potential effectiveness of the proposed approach when the ground truth is known

Setup

Define a 4-phase cell cycle where 10 TFs regulate the expression levels of 212 genes (53 genes in each phase); 10 TFs are associated with the 4 phases with (3, 2, 3, 2) in each phase; each gene/TF is regulated by one TF or the combination of 2 TFs randomly selected from the TFs from the previous phase in the cycle

ヘロト ヘ戸ト ヘヨト ヘヨト

Synthetic Experiments Yeast Cell Cycle Experiments

Synthetic Profile Generation

Data generation procedure

- Simulate the expression level for the TFs in a selected phase for two complete cell cycles (16 time steps)
- Generate the expression profiles for the genes/TFs in the next phase by a 2 time step delayed response (with Gaussian noise) from the profiles of randomly selected one or two TFs in the current phase
- Repeat this generating procedure for all phases in turn

< 日 > < 同 > < 回 > < 回 > < □ > <

Synthetic Experiments Yeast Cell Cycle Experiments

Synthetic Results

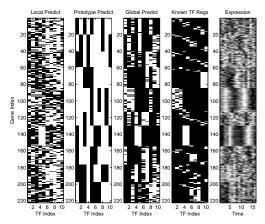


Figure: Rows denote target genes in the synthetic experiment. Columns denote candidate regulators (transcription factors).

Synthetic Experiments Yeast Cell Cycle Experiments

Synthetic Results

Results obtained using 10 clusters

Table: Results on synthetic data, predicting TF-based regulations.

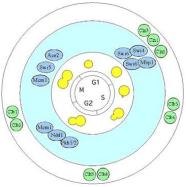
Performance	Local	Prototype	Global
comparison	regularization	method	regularization
accuracy (%)	57.6	47.2	73.0
precision (%)	21.4	18.1	30.0
recall (%)	71.5	75.0	63.8
F-measure	33.0	29.2	40.8

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Synthetic Experiments Yeast Cell Cycle Experiments

Yeast Cell Cycle Gene Regulation

Yeast cell cycle gene expression is known to be regulated by nine cell cycle transcriptional activators: Mbp1, Swi4, Swi6, Mcm1, Fkh1, Fkh2, Ndd1, Swi5 and Ace2 [Simon et al., 2001]



from http://web.wi.mit.edu/young/cellcycle/

Yeast Cell Cycle Gene Regulation

- Experiments: Identify the 9 TFs based cell cycle regulatory network
- Conduct experiments on a subset of 267 cell cycle genes from Cho et al.'s data [Cho et al., 1998]
- Evaluate the performance on a subset of 127 genes for which
 - the confirmed regulatory information can be obtained from previous literature [Simon et al., 2001; Iyer et al., 2001]
 - or potential regulation relationships can be inferred from the existing binding data [lyer et al., 2001]

< 日 > < 同 > < 回 > < 回 > < □ > <

Synthetic Experiments Yeast Cell Cycle Experiments

Yeast Cell Cycle Results

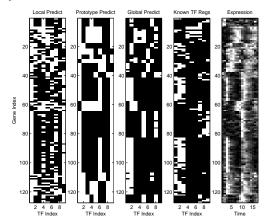


 Figure: Rows denote target genes. Columns denote candidate

 regulators (transcription factors).

Yuhong Guo

Learning Gene Regulatory Networks

Synthetic Experiments Yeast Cell Cycle Experiments

Yeast Cell Cycle Results

Results obtained using 15 clusters

Table: Results on the subset of the real yeast cell cycle gene expression data, restricted to genes where TF-based regulation information is known or can be inferred from other sources.

Performance	Local	Prototype	Global
comparison	regularization	method	regularization
accuracy (%)	57.8	55.4	73.9
precision (%)	22.3	21.2	35.7
recall (%)	47.5	48.0	43.4
F-measure	30.4	29.4	39.2

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Conclusion & Future Work

Conclusion

By sharing regulation information across genes with similar expression profiles, more time points can be used to predict the common regulators, which leads to improved prediction quality

Future Work

- Consider incorporating other sources of biologically relevant data, or other prior knowledge into network induction
- Extend this feature selection strategy to solve other feature selection problems in bioinformatics

ヘロト ヘ戸ト ヘヨト ヘヨト

Thanks!

Yuhong Guo Learning Gene Regulatory Networks

▲□▶▲圖▶▲圖▶▲圖▶ ▲国 シスの