
Computer Security and the Internet: Tools and Jewels (2e)

Chapter 3

User Authentication—Passwords, Biometrics and Alternatives

3.1 Password authentication . 56
3.2 Password-guessing strategies and defenses . 59
3.3 Account recovery and secret questions . 65
3.4 One-time password generators and hardware tokens . 67
3.5 Biometric authentication . 71
3.6 ‡Password managers and graphical passwords . 76
3.7 ‡CAPTCHAs (humans-in-the-loop) vs. automated attacks 79
3.8 ‡Entropy, passwords, and partial-guessing metrics .81
3.9 ‡End notes and further reading . 86
References . 88

The official version of this book is available at
https://www.springer.com/gp/book/9783030834104

ISBN: 978-3-030-83410-4 (hardcopy), 978-3-030-83411-1 (eBook)

Copyright c©2020-2022 Paul C. van Oorschot. Under publishing license to Springer.

For personal use only.

This author-created, self-archived copy is from the author’s web page.

Reposting, or any form of redistribution without permission, is strictly prohibited.

version: 15 Oct 2021

https://www.springer.com/gp/book/9783030834104

Chapter 3

User Authentication—Passwords,
Biometrics and Alternatives

Computer users regularly enter a username and password to access a local device or re-
mote account. Authentication is the process of using supporting evidence to corroborate
an asserted identity. In contrast, identification (recognition) establishes an identity from
available information without an explicit identity having been asserted—such as pick-
ing out known criminals in a crowd, or finding who matches a given fingerprint; each
crowd face is checked against a list of database faces for a potential match, or a given
fingerprint is tested against a database of fingerprints. For identification, since the test is
one-to-many, problem complexity grows with the number of potential candidates. Au-
thentication involves a simpler one-to-one test; for an asserted username and fingerprint
pair, a single test determines whether the pair matches a corresponding stored template.

Corroborating an asserted identity may be an end-goal (authentication), or a sub-goal
towards the end-goal of authorization—determining whether a requested privilege or re-
source access should be granted to the requesting entity. For example, users may be asked
to enter a password (for the account currently in use) to authorize installation or upgrading
of operating system or application software.

This chapter is on user authentication—humans being authenticated by a computer
system. Chapter 4 addresses machine-to-machine authentication and related cryptographic
protocols. The main topics of focus herein are passwords, hardware-based tokens, and
biometric authentication. We also discuss password managers, CAPTCHAs, graphical
passwords, and background on entropy relevant to the security of user-chosen passwords.

3.1 Password authentication

Passwords provide basic user authentication. Each user authorized to use a system is
assigned an account identified by a character string username (or numeric userid). To
gain access (“log in”) to their account, the user enters the username and a password. This
pair is transmitted to the system. The system has stored sufficient information to test

56

3.1. Password authentication 57

whether the password matches the one expected for that userid. If so, access is granted.
A correct password does not ensure that whoever entered it is the authorized user. That

would require a guarantee that no one other than the authorized user could ever possibly
know, obtain, or guess the password—which is unrealistic. A correct match indicates
knowledge of a fixed character string—or possibly a “lucky guess”. But passwords remain
useful as a (weak) means of authentication. We summarize their pros and cons later.

STORING HASHES VS. CLEARTEXT. To verify entered userid-password pairs, the
system stores sufficient information in a password file F with one row for each userid.
Storing cleartext passwords pi in F would risk directly exposing all pi if F were stolen;
system administrators and other insiders, including those able to access filesystem back-
ups, would also directly have all passwords. Instead, each row of F stores a pair (userid,
hi), where hi = H(pi) is a password hash; H is a publicly known one-way hash function
(Chapter 2). The system then computes hi from the user-entered pi to test for a match.

PRE-COMPUTED DICTIONARY ATTACK. If password hashing alone is used as de-
scribed above, an attacker may carry out the following pre-computed dictionary attack.
1. Construct a long list of candidate passwords, w1, ..., wt .
2. For each w j, compute h j = H(w j) and store a table T of pairs (h j,w j) sorted by h j.
3. Steal the password file F containing stored values hi = H(pi).
4. “Look up” the password pi corresponding to a specifically targeted userid ui with

password hash hi by checking whether hi appears in table T as any value h j; if so,
the accompanying w j works as pi. If instead the goal is to trawl (find passwords for
arbitrary userids), sort F’s rows by values hi, then compare sorted tables F and T
for matching hashes h j and hi representing H(w j) and H(pi); this may yield many
matching pairs, and each accompanying w j will work as ui’s password pi.
Exercise (Pre-computed dictionary). Using diagrams, illustrate the above attack.
‡Exercise (Morris worm dictionary). Describe the dictionary that the Internet worm

of 1988 used. (Hint: [22], [53], [56], [54, pages 19–23]. This incident, mentioned again
in Chapter 7, contributed to the rise of defensive password composition policies.)

TARGETED VS. TRAWLING SCOPE. The pre-computed attack above considered:
• a targeted attack specifically aimed at pre-identified users (often one); and
• a password trawling attack aiming to break into any account by trying many or

all accounts. (Section 3.8 discusses related breadth-first attacks.)
APPROACHES TO DEFEAT PASSWORD AUTHENTICATION. Password authentica-

tion can be defeated by several technical approaches, each targeted or trawling.
1. Online password guessing. Guesses are sent to the legitimate server (Section 3.2).
2. Offline password guessing. No per-guess online interaction is needed (Section 3.2).
3. Password capture attacks. An attacker intercepts or directly observes passwords by

means such as: observing sticky-notes, shoulder-surfing or video-recording of entry,
hardware or software keyloggers or other client-side malware, server-side interception,
proxy or middle-person attacks, phishing and other social engineering, and pharming.
Details of these methods are discussed in other chapters.

58 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

Ch.3	shell	of	Ch.1	list	of	a/acks.	File:	password-a/acks-shell	

guessing	

capture	

reconstruc<on	

bypass	

defea<ng	recovery	mechanisms	

backdoor	

A1	
A2	

B1	
B2	
B3	

B4	
B5	
B6	

B7	 B8	
B9	

C1	
C2	

D1	
E1	
E2	

F1	 F2	
F3	

Figure 3.1: Password attacks. Attack labels match attacks in Figure 1.9 (Chapter 1).

4. Password interface bypass. The above three attacks are direct attacks on password
authentication. In contrast, bypass attacks aim to defeat authentication mechanisms
by avoiding their interfaces entirely, instead gaining unauthorized access by exploiting
software vulnerabilities or design flaws (e.g., as discussed in Chapter 6).

5. Defeating recovery mechanisms. This is discussed in Section 3.3.

‡Exercise (Locating attacks on a network diagram). a) Locate the above password
attack approaches on a network architecture diagram. b) Expand this to include the addi-
tional attacks noted in Figure 3.1 (the labels save space and simplify the end diagram).

PASSWORD COMPOSITION POLICIES AND “STRENGTH”. To ease the burden of
remembering passwords, many users choose (rather than strings of random characters)
words found in common-language dictionaries. Since guessing attacks exploit this, many
systems impose1 password composition policies with rules specifying minimum lengths
(e.g., 8 or 10), and requiring password characters from, e.g., three (or perhaps all) LUDS
categories: lowercase (L), uppercase (U), digits (D), special characters (S). Such pass-
words are said to be “stronger”, but this term misleads in that such increased “complexity”
provides no more protection against capture attacks, and improves outcomes (whether an
attack succeeds or not) against only some guessing attacks. Users also predictably modify
dictionary words, e.g., to begin with a capital, and end with a digit. More accurately, such
passwords have higher resilience to (only) simple password-guessing attacks.

DISADVANTAGES OF PASSWORDS. Usability challenges multiply as the numbers of
passwords that users must manage grows from just a few to tens or hundreds. Usability
disadvantages include users being told, for example:

1. not to write their passwords down (“just memorize them”);

2. to follow complex composition policies (with apparently arbitrary rules, some exclud-
ing commas, spaces and semi-colons while others insist on special characters);

3. not to reuse passwords across accounts;

4. to choose each password to be easy to remember but difficult for others to guess (this
is meaningless for users not understanding how password-guessing attacks work);

5. to change passwords every 30–90 days if password expiration policies are in use.

1This unpopular imposition on users is viewed as a failure to fully meet principle P11 (USER-BUY-IN).

3.2. Password-guessing strategies and defenses 59

A further cognitive challenge often overlooked is password interference: the requirement
to match passwords with accounts. Beyond these usability issues, security issues noted
earlier include vulnerability to offline guessing, online guessing attacks (for predictable
user-chosen passwords—Section 3.2), and password capture (cf. Figure 3.1).

ADVANTAGES OF PASSWORDS. Among offsetting advantages, passwords:

1. are simple, easy to learn, and already understood by all current computer users;

2. are “free” (requiring no extra hardware at the client or system/server);

3. require no extra physical device to carry;

4. allow relatively quick login, and password managers may help further (for small-
keyboard mobile devices, apps commonly store passwords);

5. are easy to change or recover if lost—electronic recovery is typically immediate with
no physical travel needed or delay awaiting physical shipment (cf. Section 3.3);

6. have well-understood failure modes (forgetful users learn to write passwords down
somewhere safe);

7. require no trust in a new third party (in contrast, public-key certificates, per Chapter 8,
require trust in organizations beyond either the client or server organization);

8. are easily delegated (e.g., to a spouse or secretary while on vacation), an underrated
benefit despite the security drawback that retracting delegation is rarely done.

Passwords remain the dominant means of Internet user authentication. No alternative has
displaced them to date. One might conclude that the advantages outweigh the disadvan-
tages, or that their historical position as a default authentication method, provides strong
inertia. To displace an incumbent, often a new technology must be not just marginally
but substantially better due to inertia, universal support enjoyed by an incumbent, and
interoperability with existing systems. About cost, passwords are “free” only if no costs
are charged for usability or user memory. That cost is small for one password, but much
larger for remembering hundreds of passwords and which one goes with each account.

3.2 Password-guessing strategies and defenses

Password-guessing attacks fall into two categories so distinct that using the term “pass-
word guessing” for both can be more confusing than helpful. This will be clear shortly.

ONLINE PASSWORD GUESSING AND RATE-LIMITING. An online guessing attack
can be mounted against any publicly reachable password-protected server. A human at-
tacker or automated program is assumed to know one or more valid userids; these are
typically easily obtained. Userid-password pairs, with password guesses, are submitted
sequentially to the legitimate server, which conveniently indicates whether the attempt is
correct or not—access is granted or denied. An obvious defensive tactic, for sites that
care at all about security, is to rate-limit or throttle guesses across fixed time windows—
enforcing a maximum number of incorrect login attempts per account. This may “lock

60 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

out” legitimate users whose accounts are attacked,2 a drawback that can be ameliorated
by account recovery methods (Section 3.3). A variation is to increase delays, e.g., dou-
bling system response time after successive incorrect login: 1 s, 2 s, 4 s, and so on.

OFFLINE PASSWORD GUESSING. In offline guessing attacks (e.g., by pre-computed
dictionary per page 57, or on-the-fly below), it is assumed that an attacker has somehow
acquired the system password hash file. (Chapter 5 discusses how Unix-based systems
store password hashes in /etc/passwd and related files. Password hashing is more com-
mon than reversible encryption, as that also requires a means to protect the encryption
key itself.) This indeed occurs often in practice, but is a significant requirement absent
for online guessing attacks. The hash file provides verifiable text (Chapter 4), i.e., data al-
lowing a test of correctness of password guesses without contacting the legitimate server.
Consequently, the number of offline guesses that can be made over a fixed time period is
limited only by the computational resources that an attacker can harness; in contrast for
online guessing, even without rate-limiting, the number of guesses is limited by the online
server’s computing and bandwidth capacity.

ITERATED HASHING (PASSWORD STRETCHING). Offline password guessing at-
tacks can be slowed down using a tactic called iterated hashing (or password stretching).
Ideally this defense is combined with salting (below). The idea is that after hashing a
password once with hash function H, rather than storing H(pi), the result is itself hashed
again, continuing likewise d times, finally storing the d-fold hash H(...H(H(pi))...), de-
noted Hd(pi). This increases the hashing time by a factor of d, for both the legitimate
server (typically once per login) and each attacker guess. Practical values of d are limited
by the constraint that the legitimate server must also compute the iterated hash. A value
d = 1000 slows attacks by a factor of 1000, and d can be adjusted upward as computing
power increases, e.g., due to advances in hardware speeds.3

PASSWORD SALTING. To combat dictionary attacks (above), common practice is to
salt passwords before hashing. For userid ui, on registration of each password pi, rather
than storing hi = H(pi), the system selects, e.g., for t ≥ 64, a random t-bit value si as salt,
and stores (ui, si, H(pi,si)) with pi, si concatenated before hashing. Thus the password
is altered by the salt in a deterministic way before hashing, with si stored cleartext in the
record to enable verification. For trawling attacks, the above dictionary attack using a pre-
computed table is now harder by a factor of 2t in both computation (work) and storage—a
table entry is needed for each possible value si. For attacks on a targeted userid, if the salt
value si is available to an insider or read from a stolen file F , the salt does not increase the
time-cost of on-the-fly attacks where candidate passwords are hashed in real time vs. using
pre-computed tables of hashes (above); confusingly, both are called dictionary attacks.

A bonus of salting is that two users who happen to choose the same password, will
almost certainly have different password hashes in the system hash file. A salt value si

may also combine a global system salt, and a user-specific salt (including, e.g., the userid).
PEPPER (SECRET SALT). A secret salt (sometimes called pepper) is like a regular

2The Pinkas-Sander protocol (Section 3.7) avoids this denial of service (DoS) problem.
3This follows the principle of DESIGN-FOR-EVOLUTION (HP2).

3.2. Password-guessing strategies and defenses 61

salt, but not stored. The motivation is to slow down attacks, by a method different than
iterated hashing but with similar effect. When user ui selects a new password pi, the
system chooses a random value ri, 1≤ ri ≤ R; stores the secret-salted hash H(pi,ri); and
then erases ri. To later verify a password for account ui, the system sequentially tries all
values r∗ = ri in a deterministic order (e.g., sequentially, starting at a random value in
[1,R], wrapping around from R to 1). For each r∗ it computes H(pi,r∗) and tests for a
match with the stored value H(pi,ri). For a correct pi, one expects a successful match on
average (i.e., with 50% probability) after testing half the values r∗, so if R is 20 bits, one
expects on average a slow-down by a factor 219. Pepper can be combined with regular salt
as H(pi,si,ri), and with iterated hashing. (Aside: if the values r∗ are tested beginning at a
fixed point such as 0, timing data might leak information about the value of ri.)

SPECIALIZED PASSWORD-HASHING FUNCTIONS. General crypto hash functions
H from the 1990s like MD5 and SHA-1 were designed to run as fast as possible. This
also helps offline guessing attacks, wherein hash function computation is the main work;
relatively modest custom processors can exceed billions of MD5 hashes per second. As
attackers improved offline guessing attacks by leveraging tools such as Graphics Process-
ing Units (GPUs), parallel computation, and integrated circuit technology called FPGAs
(field-programmable gate arrays), the idea of specialized password-hashing functions to
slow down such attacks arose. This led to the international Password Hashing Competition
(PHC, 2013-2015), with winner Argon2 now preferred; prior algorithms were bcrypt and
scrypt. Specialized hash functions called key derivation functions (KDFs) are also used to
derive encryption keys from passwords. As an older example, PBKDF2 (password-based
KDF number 2) takes as inputs (pi, si, d, L)—a password, salt, iteration count, and desired
bitlength for the resulting output to be used as a crypto key.

Example (GPU hashing). GPUs are particularly well-suited to hash functions such as
MD5 and SHA-1, with cost-efficient performance from many inexpensive custom cores.
For example, the circa-2012 Tesla C2070 GPU has 14 streaming multiprocessors (SMs),
each with 32 computing cores, for 448 cores in one GPU. Machines may have, e.g., four
GPUs. As a result, password-hashing functions are now designed to be “GPU-unfriendly”.

SYSTEM-ASSIGNED PASSWORDS AND BRUTE-FORCE GUESSING. Some systems
use system-assigned passwords.4 The difficulty of guessing passwords is maximized by
selecting each password character randomly and independently. An n-character password
chosen from an alphabet of b characters then results in bn possible passwords, i.e., a pass-
word space of size bn. On such systems, there is no guessing strategy better than brute-
force guessing: simply guessing sequentially using any enumeration (complete listing in
any order) of the password space. The probability of success is 100% after bn guesses,
with success expected on average (i.e., with 50% probability) after bn/2 guesses. If the
passwords need not be a full n characters, a common attack strategy would first try all
one-character passwords, then all two-character passwords, and so on. System-assigned
passwords are little used today. Their higher security comes with poor usability—humans

4For example, in 1985, FIPS 112 [49] noted that many user-chosen passwords are easily guessed, and
therefore all passwords should be system-generated.

62 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

are unable to manually remember large numbers of random strings for different accounts,
even without password expiration policies (below). Random passwords are more plausible
(usable) when password manager tools are used (Section 3.6).

PROBABILITY OF GUESSING SUCCESS. Simple formulas giving the probability that
system-assigned passwords are guessed can help inform us how to measure vulnerability.
(For user-chosen passwords, these simple formulas fail, and partial-guessing metrics per
Section 3.8 are used.) The baseline idea is to consider the probability that a password is
guessed over a fixed period (e.g., 3 months or one year). A standard might allow maximum
guessing probabilities of 1 in 210 and 1 in 220, respectively, for Level 1 (low security) and
Level 2 (higher security) applications. The parameters of interest are:

• G, the number of guesses the attacker can make per unit time;

• T , the number of units of time per guessing period under consideration;

• R = bn, the size of the password space (naive case of equiprobable passwords).

Here b is the number of characters in the password alphabet, and n is the password length.
Assume that password guesses can be verified by online or offline attack. Then the prob-
ability q that the password is guessed by the end of the period equals the proportion of the
password space that an attacker can cover. If GT > R then q = 1.0, and otherwise

q = GT/R for GT ≤ R (3.1)

Passwords might be changed at the end of a period, e.g., due to password expiration
policies. If new passwords are independent of the old, the guessing probability per period
is independent, but cumulatively increases with the number of guessing periods.

Example (Offline guessing). For concreteness, consider T = 1 year (3.154× 107s);
truly random system-assigned passwords of length n = 10 from an alphabet of b = 95
printable characters yielding R = bn = 9510 = 6×1019; and G = 100 billion guesses per
second (this would model an attack with a relatively modest number of modern GPUs,
but otherwise favorable offline attack conditions assuming a password hash file obtained,
a fast hash function like MD5, and neither iterated hashing nor secret salts). A modeling
condition favoring the defender is the assumption of system-assigned passwords, which
have immensely better guess-resistance than user-chosen passwords (below). Given these
model strengths and weaknesses, what do the numbers reveal?

q = GT/R = (1011)(3.154×107)/6(1019) = 0.05257 (3.2)

Oops! A success probability over 5% far exceeds both 2−10 and 2−20 from above. These
conditions are too favorable for an attacker; a better defensive stance is needed.

‡Exercise (Password expiration/aging). Password expiration policies require users to
change passwords regularly, e.g., every 30 or 90 days. Do such policies improve security?
List what types of attacks they stop, and fail to stop. (Hint: [14], [62].)

LOWER BOUND ON LENGTH. Equation (3.1) can be rearranged to dictate a lower
bound on password length, if other parameters are fixed. For example, if security policy
specifies an upper bound on probability q, for a fixed guessing period T and password
alphabet of b characters, we can determine the value n required (from R = bn) if we have

3.2. Password-guessing strategies and defenses 63

a reliable upper bound estimate for G, since from R = bn and (3.1) we have:

n = lg(R)/lg(b) where R = GT/q. (3.3)

Alternatively, to model an online attack, (3.1) can determine what degree of rate-limiting
suffices for a desired q, from G = qR/T .

USER-CHOSEN PASSWORDS AND SKEWED DISTRIBUTIONS. Many systems today
allow user-chosen passwords, constrained by password composition policies and (as dis-
cussed below) password denylists and other heuristics. Studies show that the distribution
of user-chosen passwords is highly skewed: some passwords are much more popular than
others. Figure 3.2 illustrates this situation. Attackers tailor their guessing strategies by try-
ing more popular (higher estimated probability) passwords first. While originally the term
dictionary attack loosely implied leveraging words in common-language dictionaries, it
now often refers to using ordered lists of password candidates established by heuristic
means (e.g., based on empirical password databases including huge lists published after
compromises), often with on-the-fly computation of hashes (cf. p.60).

PASSWORD DENYLISTS AND PROACTIVE PASSWORD CRACKING. Due to the
phenomenon of skewed password distributions, another simple defense against (especially
online) password-guessing attacks is denylisting of passwords. This involves composing
lists of the most-popular passwords, e.g., observed from available password distributions
publicly available or within an enterprise organization. These denylists, originally based
on a modified regular-language dictionary, need not be huge—e.g., as short as 104 to 106

entries. The idea then, sometimes also called proactive password checking, is to disallow
any password, at the time a user tries to select it, if it appears on the denylist. A related idea

(a)	What	we	want:	randomly	distributed	passwords		

(b)	What	we	get:	predictable	clustering,	highly	skewed	distribu;on	

dis;nct	passwords	(x)	

frequency	
(y)	

frequency	
(y)	

Password	space	

full	space	
(box)	

dis;nct	passwords	(x)	

passwords	
chosen	(dots)	 y=1	

Password	space	

� � �� � 	

� � � � � 	
� � � � � 	

� � � � � 	
� � � � � 	

� � � � � 	

� � � � � 	

� � � � � 	

� � � � � 	

�

�	

�

�	

�

�	

�

�	

�

�	

� � �� � 	

y=0	

Figure 3.2: Password distributions (illustrative). Ideally, chosen passwords are unique
(y = 1) with most unchosen (y = 0). Diameter represents frequency a password is chosen.

64 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

is for a system to try to “crack” its own users’ passwords using only the password hashes
and background computing cycles, in variations of dictionary attacks described earlier;
account owners of cracked passwords are sent email notices to change their passwords
because they were too easily found.5

‡Exercise (Heuristic password-cracking tools). (a) Look up and experiment with
common password-cracking tools such as JohnTheRipper and oclHashcat. (b) Do they
use pre-computed tables, or hash password guesses on-the-fly? Discuss. (c) Explain what
mangling rules are. (Hint: [57].)

LOGIN PASSWORDS VS. PASSKEYS. Recalling KDFs (above), passwords may be
used to derive cryptographic keys, e.g., for file encryption. Such password-derived en-
cryption keys (passkeys) are subject to offline guessing attacks and require high guessing-
resistance. For site login passwords, complex composition policies are now generally rec-
ognized as a poor choice, imposing usability burdens without necessarily improving secu-
rity outcomes; alternatives such as rate-limiting, denylisting, salting and iterated hashing
appear preferable (Table 3.1). In contrast, for passkeys, complex passwords are prudent;
memory aids include use of passphrases, the first letters of words in relatively long sen-
tences, and storing written passwords in a safe place. Note that in contrast to site pass-
words, where “password recovery” is a misnomer (Section 3.3), recovering a forgotten
password itself is a requirement for passkeys—consider a passkey used to encrypt a life-
time of family photographs. Users themselves are often responsible for managing their
own password recovery mechanism for passkeys (some realize this only too late).

Defensive measure Primary attack addressed Notes
rate-limiting online guessing some methods result in user lockout
denylisting online guessing disallows worst passwords
salt pre-computed dictionary increases cost of generic attacks
iterated hashing offline guessing combine with salting
pepper offline guessing alternative to iterated hashing
MAC on password offline guessing stolen hash file no longer useful

Table 3.1: Defenses against web-login password attacks. For offline attacks, a file of
password hashes is also needed and thus one may assume that salts are also known.

Example (Password management: NIST SP 800-63B). U.S. government password
guidelines were substantially revised in 2017. They include: mandating use of password
denylists to rule out common, highly predictable, or previously compromised passwords;
mandating rate-limiting to throttle online guessing; recommending against composition
rules, e.g., required combinations of lowercase, uppercase, digits and special characters;
recommending against password expiration, but mandating password change upon evi-
dence of compromise; mandating secure password storage methods (salt of at least 32
bits, hashing, suitable hash iteration counts, e.g., cost-equivalent to 10,000 iterations for
PBKDF2); recommending a further secret key hash (MAC) and if so mandating that the
key be stored separately (e.g., in a hardware security module/HSM).

5Because the most-popular passwords are also most easily guessed, failure to use denylists goes against
two principles: P12, SUFFICIENT-WORK-FACTOR and P13, DEFENSE-IN-DEPTH (equal-height fences).

3.3. Account recovery and secret questions 65

‡Exercise (Password guidelines: others). Compare the revised U.S. guidelines above
[29, Part B] to those of governments of: (i) U.K., (ii) Germany, (iii) Canada, (iv) Australia.

‡Exercise (Password-guessing defenses). An expanded version of Table 3.1 includes
password composition rules (length and character-set requirements), password expiration,
and password meters. (a) Discuss the pros and cons of these additional measures, includ-
ing usability costs. (b) Discuss differences in guessing-resistance needed for passwords
to resist online guessing vs. offline guessing attacks. (Hint: [24].)

3.3 Account recovery and secret questions

Password-based authentication inevitably leads to forgotten passwords. Since not all users
write them down in a safe place for retrieval, some means of password recovery is es-
sential. Site (account) authentication passwords are rarely literally “recovered”, as best
practice avoids storing cleartext passwords at servers. Rather, what is typically recovered
is access to password-protected accounts, by some password reset method.

RECOVERY PASSWORDS AND RECOVERY LINKS. A common reset method is to
send to users, using a recovery email address set up during registration, a temporary pass-
word or web page link that serves as an authenticator. On following the link or entering
the temporary code, the user is prompted to immediately create a new password. Here
for obvious reasons, registering the new password does not require authorization by en-
tering an existing password (as typically required for changing passwords); the temporary
capability plays that role.

LOSS OF PRIMARY EMAIL PASSWORD (CODES SENT TO TELECOM DEVICE). A
complication arises if the forgotten password is for a primary email account itself. One
solution is to register a secondary email address and proceed as above. An alternative
is to pre-register an independent device or channel, most commonly by a phone number
(mobile, or wireline with text-to-voice conversion) to which a one-time recovery code
is sent by text message. Note: a compromised primary email account may be used to
compromise all other accounts that use that email address for password recovery.

QUESTION-BASED RECOVERY. Another account-recovery method to address for-
gotten passwords is secret questions, also called challenge questions. (The term personal
knowledge questions is also used, but risks confusion with a type of targeted attack re-
lying on personal knowledge.) Typically, secret questions are not literally questions that
are secret, but rather secrets cued by user-selectable questions. On account registration, a
user provides answers to a selected subset of questions. On later forgetting a password,
correctly answering questions allows the user to re-establish a new account password.

USABILITY ASPECTS. The idea is that using questions to cue information already in
a user’s long-term memory is an easier memory task than remembering text passwords.
(Cued recall is discussed further in Section 3.6.) However, recovery by such challenge
questions fails surprisingly often in practice, including because:

1. recovery may be long removed in time from when answers are set;
2. answers may be non-unique or change over time (e.g., favorite movie);

66 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

3. some users register false answers but forget this, or the false answers themselves.6

SECURITY ASPECTS. Challenge questions are at best “weak” secrets—the answer
spaces are often small (pro baseball team, spouse’s first name) or highly skewed by popu-
larity (favorite food or city), making statistical guessing attacks easy. For targeted attacks,
some answers are easily looked up online (high school attended). User-created questions,
as allowed in some systems, are also notoriously bad (e.g., favorite color). Trying to sal-
vage security by requiring answers to more questions reduces efficiency, and increases
rejection of legitimate users due to incorrect answers. The problem remains: the answers
are often not secret or too easily guessed. If more easily guessed than the primary pass-
word, this introduces a weak link as a new attack vector. Recovery questions then violate
principle P13 (DEFENSE-IN-DEPTH); a minor mitigation is to limit the validity period of
recovery codes or links.

SUMMARY. Secret questions are poor both in security (easier to guess than user-
chosen passwords) and reliability (recovery fails more often than for alternatives). In
addition, secret answers are commonly stored plaintext (not hashed per best practice for
passwords) to allow case-insensitive matching and variations in spacing; this leaves the
answers vulnerable to server break-in, which a large company then apologizes for as
an “entirely unforeseeable” event. They then ask you to change your mother’s maiden
name—in their own system, and every other system where that question is used. (This
may however be easier than changing your fingerprints when biometric data is similarly
compromised. All of a sudden, regular passwords start to look not so bad, despite many
flaws!) Overall, the general consensus is that secret questions are best abandoned; any use
should be accompanied by additional authenticators, e.g., a link sent to an email account
on record, or a one-time password texted to a registered mobile phone.

‡Example (Password Reset Attack). Password reset processes that rely on secret ques-
tions or SMS codes may be vulnerable to an interleaving attack. The attacker requires con-
trol of a web site (site-A), and a way to get user victims to visit it, but need not intercept
Internet or phone messages. Site-A offers download of free resources/files, requiring users
to register first. The registration solicits information such as email address (if the goal is
to take over that email address), or SMS/text phone contact details (see below); the latter
may be solicited (“for confirmation codes”) as the user attempts to download a resource.
The user visits site-A and creates a new account as noted. In parallel, the attacker requests
password reset on an account of the same victim at a service provider site-B (often the
userid is the same email address)—an email provider or non-email account. Site-B, as
part of its reset process, asks secret questions before allowing password reset; these are
forwarded by the attack program to the victim on site-A, positioned as part of site-A’s reg-
istration. Answers are forwarded to site-B and authorize the attacker to set a new account
password on site-B. If site-B’s reset process involves sending one-time codes to the con-
tact number on record, the attacker solicits such codes from the victim, positioned as part
of registration or resource download from site-A. If site-B sends CAPTCHA challenges
(Section 3.7) to counter automated attacks, they are similarly relayed to the victim on

6Some users believe false answers improve security; empirical studies have found the opposite.

3.4. One-time password generators and hardware tokens 67

site-A. The attack requires synchronization and seems complicated, but has been demon-
strated on a number of major real-world services. The attack fails for sites sending reset
messages to email addresses on record, but resets relying on secret questions or SMS
codes are common, e.g., to address users having lost access to recovery email accounts,
or when the account host is itself an email provider and users lack alternate email.

3.4 One-time password generators and hardware tokens

A major security issue with ordinary passwords is their static nature. If observed and
captured by a passive attacker (eavesdropper), simple replay of the password defeats se-
curity. A step forward is one-time passwords (OTPs)—passwords valid for one use only.
A challenge is how to pre-share lists of one-time passwords between the party to be au-
thenticated (claimant) and the verifier. For electronic account access, some banks give
customers paper lists of passwords to be used once each (then crossed off); the server
keeps corresponding records for verification. Another method is to use one-way hash
functions to generate sequences of one-time passwords from a seed (Lamport, below).

OTPS RECEIVED BY MOBILE. As Section 3.3 noted, mobile phones may be used
as an independent channel for one-time codes via “text” or SMS (Short Message Service)
messages. These OTPs are generated system-side and sent to the user’s number on record.
Beyond use for account recovery, they can serve as a (stand-alone) password alternative;
or as a “what you have” second factor (Fig. 3.5, p.70). In all cases, it should be verified
that the phone number is bound to a physical phone (versus, e.g., a voice-over-IP number).

SIM SWAP ATTACK. Sending OTPs to a mobile phone opens a new attack vector:
by social engineering, an attacker, asserting a lost or stolen phone, tricks a mobile phone
provider into transferring a victim’s mobile number to a new subscriber identity module
(SIM), the in-phone chip-card by which phone numbers are mapped to mobile phones.
Thereafter, SMS OTPs intended for the legitimate user (victim) go to the attacker’s phone.

OTPS FROM LAMPORT HASH CHAINS. Starting with a random secret (seed) w,
user A can authenticate to server B using a sequence of one-time passwords as follows
(Fig. 3.3). H is a one-way hash function (Chapter 2) and t is an integer (e.g., t = 100). Let
a hash chain of order t be the sequence: w, H(w), H(H(w)), H3(w), ..., Ht(w). Ht means

user	A	 server	B	

Lamport	hash	chain	for	one-3me	passwords	(OTPs).	
Illustrated	with	t	=	100	for	session	i	=	76	(here	t-i	=	24).	

	

i	=	0	(setup)					secret	w,			h0		=	H100(w)												
session	i	

			Setup	value:		v	ß	h0	

first	75	
	sessions	 ...	last	update:		v	ß	h75			

		Receive	x;		if	H(x)	=	v		allow	
		(else	deny).			Update	v	ß	x	
		Receive	x;		if	H(x)	=	v		allow	
		(else	deny).			Update	v	ß	x	i	=	77																Compute		h77	=	H23(w)				

i	=	76																Compute		h76	=	H24(w)	
A,	x	=	h76													

A,	x	=	h77	

...
	

...
	 ...
		

h75	=	H25(w)		

Figure 3.3: Lamport hash chain. Illustrated with t = 100 for session i = 76 (t− i = 24).
Setup value h0 must initially be transferred over a secure channel and associated with A.

68 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

t nested iterations. The elements in the sequence are used once each in the order:

h1 = H99(w), h2 = H98(w), ..., h98 = H(H(w)), h99 = H(w), h100 = w (3.4)

For 1 ≤ i ≤ 100 the password for session i will be hi = Ht−i(w). As set-up, A sends as
a shared secret to B, the value h0 = H100(w), over a channel ensuring also data origin
authenticity (so B is sure it is from A, unaltered); B stores h0 as the next-verification value
v. Both parties set i = 1. Now to authenticate in session i (for t sessions, 1 ≤ i ≤ t),
A computes the next value hi in the chain and sends to B: (idA, i, hi). (The notation is
such that the values are used in reverse order, most-iterated first.) B takes the received
value hi, hashes it once to H(hi), checks for equality to the stored value v (which is hi−1),
and that the i received is as expected. Login is allowed only if both checks succeed; B
replaces v by the received hi (for the next authentication), and i is incremented. A can thus
authenticate to B on t occasions with distinct passwords, and then the set-up is renewed
with A choosing a new w (one-time passwords must not be reused). Note that for each
session, A provides evidence she knows w, by demonstrating knowledge of some number
of iterated hashes of w; and even if an attacker intercepts the transferred authentication
value, that value is not useful for another login (due to the one-way property of H).

‡Example (Pre-play attack on OTPs). OTP schemes can be attacked by capturing
one-time passwords and using them before the system receives the value from the legit-
imate user. Such attacks have been reported—e.g., an attacker socially engineers a user
into revealing its next five banking passwords from their one-time password sheet, “to
help with system testing”. Thus even with OTPs, care should be exercised; ideally OTPs
would be sent only to trusted (authenticated) parties.

‡Example (Alternative OTP scheme). The following might be called a “poor man’s”
OTP scheme. Using a pre-shared secret P, A sends to B: (r, H(r,P)). B verifies this
using its local copy of P. Since a replay attack is possible if r is reused, r should be a
time-varying parameter (TVP) such as a constantly increasing sequence number or time
counter, or a random number from a suitably large space with negligible probability of
duplication. As a drawback, a cleartext copy of the long-term secret P is needed at B.

‡Exercise (Forward guessing attack). Explain how the method of the example above
can be attacked if P is a “poorly chosen” secret, i.e., can be guessed within a feasible
number of guesses (here “feasible” means a number the attacker is capable of executing).

PASSCODE GENERATORS. A commercial form of one-time passwords involves in-
expensive, calculator-like passcode generators (Fig. 3.4). These were originally special-
ized devices, but similar functionality is now available using smartphone apps. The de-
vice holds a user-specific secret, and computes a passcode output with properties similar
to OTPs. The passcode is a function of this secret and a TVP challenge. The TVP might
be an explicit (say eight-digit) string sent by the system to the user for entry into the de-
vice (in this case the device requires a keypad). Alternatively, the TVP can be an implicit
challenge, such as a time value with, say, one-minute resolution, so that the output value
remains constant for one-minute windows; this requires a (loosely) synchronized clock.
The OTP is typically used as a “second factor” (below) alongside a static password. The
user-specific secret is stored in cleartext-recoverable form system-side, to allow the sys-

3.4. One-time password generators and hardware tokens 69

A	here,	I’d	like	to	log	in	

user	A	 system	B	

here	is	a	fresh	challenge,	c		

response:		r	=	f(c,	sA)	

...					...	
	A						sA	
...					...	

sA		

		
	f	c		

=	

Passcode	generator	implemen<ng	a	keyed	one-way	func<on	f.	The	user-specific	
secret	is	sA	is	shared	with	the	system.	Response	r	plays	the	role	of	a	one-<me	
password.		(Based	on:	[HAC,	p.403].)	

	

secret	sA		

		
	f	

allow	
no	yes	
deny	

Figure 3.4: Passcode generator using a keyed one-way function f . User-specific secret
sA is shared with the system. Response r is like a one-time password.

tem to compute a verification value for comparison, from its local copy of the secret and
the TVP. Generating OTPs locally via passcode generators, using a synchronized clock as
an implicit challenge, can replace system-generated OTPs transmitted as SMS codes to
users—and without the risk of an SMS message being intercepted.

HARDWARE TOKENS. Passcode generators and mobile phones used for user authen-
tication are instances of “what you have” authentication methods. This class of methods
includes hardware tokens such as USB keys and chip-cards (smart cards), and other phys-
ical objects intended to securely store secrets and generate digital tokens (strings) from
them in challenge-response authentication protocols (Chapter 4). As a typical example,
suppose a USB token holds user A’s RSA (public, private) signature key pair. The to-
ken receives a random number rB as a challenge. It sends in response a new random
number rA, and signature SA(rA,rB) over the concatenated numbers. This demonstrates
knowledge of A’s private key in a way that can be verified by any holder of a valid (e.g.,
pre-registered) copy of A’s public key. The term authenticator is a generic descriptor for a
hardware- or software-based means that produces secret-based strings for authentication.

USER AUTHENTICATION CATEGORIES. User authentication involves three main
categories of methods (Fig. 3.5). Knowledge-based means (“what you know”) include
things remembered mentally, e.g., passwords, PINs, passphrases. The “what you have”
category uses a computer or hardware token physically possessed (ideally, difficult to
replicate), often holding a cryptographic secret; or a device having hard-to-mimic physical
properties. The “what you are” category includes physical biometrics (Section 3.5), e.g.,
fingerprints; related methods involve behavioral biometrics or distinguishing behavioral
patterns. A fourth category, “where you are”, requires a means to determine user location.

MULTIPLE FACTORS. This chapter discusses several user authentication alternatives
to passwords. These can either replace, or be used alongside passwords to augment them.
In the simplest form, two methods used in parallel both must succeed for user authentica-
tion. Two-factor authentication (2FA) does exactly this, typically requiring that the meth-
ods be from two different categories (Fig. 3.5); a motivation is that different categories are
more likely to deliver independent protection, in that a single attack (compromise) should
not defeat both methods. Multi-factor authentication is defined similarly. Most such fac-

70 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

User	authen+ca+on	categories	
based	on		

type	of	verifica+on	evidence	

1	 2	

3	4	

Ch.3:	Categories	of	user	authen+ca+on.	
1)	passwords,	PINs,	passphrases	(knowledge-based	authen+ca+on).	
2)	includes	hardware	tokens	holding	cryptographic	keys,	e.g.,	used	in	a	challenge-
response	protocol	(Chapter	4);	secrets	wriIen	down	on	paper.	
3)	includes	physical	and	behavioural	biometrics;	behavioural	paIerns	could	be	
considered	a	separate	category,	e.g.,	loca+on	paIerns	(8).	%	vs.	present	loca+on	per	se		
4)	may	involve	geoloca+on	of	a	device	associated	with	a	user.	
5)	passwords	that	are	too	hard	to	remember	or	used	infrequently	may	be	wriIen	down.	
6)	devices	used	to	received	one-+me	passwords.		
7)	device	fingerprin+ng.	
	
	

5	

7	6	mul+-	
factor	

what		
you	have	

what		
you	know	

where	you	
are	

what	you	
are/do	8	

Figure 3.5: User authentication categories 1–3 are best known. Here (3) includes physical
and behavioral biometrics; behavioral patterns could be considered a separate category,
e.g., observed user location patterns (8). Location-based methods (4) may use geolocation
of a user-associated device. A secret written on paper (because it is critical yet might be
forgotten, or rarely used) may be viewed as something you have (5). Devices may receive
one-time passwords (6). Device fingerprinting is shown as a sub-category of (7).

tors have traditionally required some form of explicit user involvement or action; in this
case the additional factors impose usability costs. If authentication is user-to-device and
then device-to-web, we call it two-stage authentication.

Exercise (Two-factor principles). Explain how 2FA is related to: P12 SUFFICIENT-
WORK-FACTOR, P13 DEFENSE-IN-DEPTH, P18 INDEPENDENT-CONFIRMATION.

Example (Selecting factors). As a typical default, static passwords offer an inex-
pensive first factor from “what you know”. Common two-factor schemes are (password,
biometric) and (password, OTP from passcode generator). Automated banking machines
commonly require (PIN, chip-card)—something you know plus something you have. If,
against advice, you write your PIN on the card itself, the two factors are no longer inde-
pendent and a single theft allows defeat.

‡COMPLEMENTARY FACTORS AND PROPERTIES. Multiple factors should be com-
bined with an eye to the complementary nature of the resulting combined properties. Us-
ing two “what you know” factors (two passwords) increases memory burden; a hardware
token avoids the cognitive burden of a second password. However, hardware authentica-
tors must be carried—imagine having as many as passwords! When multiple schemes are
used in parallel, if they are independent (above), their combined security is at least that of
the weaker, and ideally stronger than each individually—otherwise there is little benefit
to combine them. Regarding usability, however, inconveniences of individual factors are
typically also additive, and the same is true for deployability barriers/costs.

‡SIGNALS VS. FACTORS. Some systems use “invisible” or “silent” authentication
checks behind the scenes, which do not require explicit user involvement. Beyond earlier-
discussed authentication factors, which require explicit user actions, the broader class of
authentication signals includes also implicit means such as:

• IP-address checks of devices previously associated with successful logins;

• browser cookies stored on devices after previously successful authentication;

• device fingerprinting, i.e., means to identify devices associated with legitimate users
(previous successful logins), by recognizing hardware or software characteristics.

3.5. Biometric authentication 71

Individual signals may use secrets assumed to be known or possessed only by legitimate
users, or devices or locations previously associated with legitimate users. Silent signals
offer usability advantages, as long as they do not trigger false rejection of legitimate users.

‡FACTORS, PRIMARY AUTHENTICATION, AND RECOVERY. Are second factors
suitable for stand-alone authentication? That depends on their security properties—but
for a fixed application, if yes, then there would seem little reason to use such a factor in
combination with others, except within a thresholding or scoring system. As a related
point, any password alternative may be suitable for account recovery if it offers suffi-
cient security—but in reverse, recovery means are often less convenient/efficient (which
is tolerable for infrequent use) and therefore often unsuitable for primary authentication.

3.5 Biometric authentication

As discussed, passwords have well-known disadvantages in both usability and security.
Authentication approaches based on hardware tokens often do well on security but suffer
due to token cost, being forgotten, lost or stolen, and inconvenience. This leads to pro-
motion of biometric-based authentication, with usability a primary motivation: nothing
for users to carry, no cognitive burden, a general appearance of ease of use (a fingerprint
is quicker than typing a password on a mobile phone), and scalability in terms of burden
on users (unlike passwords, the burden does not increase with the number of accounts).
These are powerful advantages, varying somewhat based on the biometric used. We now
discuss biometrics in more detail, and find their security generally less than expected,
while other disadvantages render them inappropriate for remote authentication.

Certain human characteristics are unique to individuals even across large popula-
tions. Biometric authentication methods leverage this. Physical biometrics (based on
static physiological characteristics) provide the “what you are” category of authentica-
tion; behavioral biometrics (based on behavioral features related to physiology) are part
of a “what you do” category. Behavioral characteristics independent of human physiology,
such as geolocation patterns and call-patterns (phone numbers called), can also be used in
non-biometric behavioral authentication approaches. A set of biometric features that can
be used for authentication is called a biometric modality. Table 3.2 gives examples.

BIOMETRICS ARE NON-SECRETS. Authentication approaches that rely on demon-
strating knowledge of a secret, such as passwords, rely on an assumption: the secret is
known only to authorized parties. (That this assumption is commonly violated for pass-
words is a security weakness.) Biometric characteristics are not secrets—fingerprints are
left on many surfaces, and faces are readily visible. Thus biometric authentication relies
on a different assumption: that samples are input by a means providing some assurance of
being “tightly bound” to the user present. Consider a fingerprint sampled at a supervised
entrance, e.g., at an airport or corporate facility. The supervision provides some assur-
ance that the individual is not presenting an appendage other than their own for physical
measurement, nor injecting a data string captured earlier. Biometrics thus implicitly rely
on some form of trusted input channel; this generally makes them unsuitable for remote

72 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

Modality Type Notes
fingerprints P common on laptops and smartphones
facial recognition P used by some smartphones
iris recognition P the part of the eye that a contact lens covers
hand geometry P hand length and size, also shape of fingers and palm
retinal scan P based on patterns of retinal blood vessels
voice authentication M physical-behavioral mix
gait B characteristics related to walking
typing rhythm B keystroke patterns and timing
mouse patterns B also scrolling, swipe patterns on touchscreen devices

Table 3.2: Biometric modalities: examples. P (physical), B (behavioral), M (mixed).
Fingerprint (four digits) and iris biometrics are used at U.S.-Canadian airport borders.

authentication over the Internet. Note that your iPhone fingerprint is not used directly
for authentication to remote payment sites; a two-stage authentication process involves
user-to-phone authentication (biometric verification by the phone), then phone-to-site au-
thentication (using a protocol leveraging cryptographic keys).

FAILURE TO ENROLL/FAILURE TO CAPTURE. Failure to enroll (FTE) refers to
how often users are unsuccessful in registering a template. For example, a non-negligible
fraction of people have fingerprints that commercial devices have trouble reading. The
FTE-rate is a percentage of users, or percentage of enrollment attempts. Failure to capture
(FTC), also called failure to acquire, refers to how often a system is unable to acquire a
sample of adequate quality to proceed. FTE-rate and FTC-rate should be examined jointly
with FAR/FRR rates (below), due to dependencies.

DISADVANTAGES (BIOMETRICS). Many modalities require custom client-side hard-
ware. Adding to system complexity, fallback mechanisms are needed to accommodate
rejection of legitimate users (sometimes surprisingly frequent), and FTE and FTC issues.
Scalability also has a downside: using fingerprints across many systems, each sampling
and storing templates, results in a scenario analogous to password reuse: a compromise
of any system puts others at risk. From experience, believing no such compromise will
occur is naive; but here, because a foundational requirement for biometrics is that they
cannot be changed, the consequences are severe. This inherent “feature” of biometrics
being unrevokable is a daunting show-stopper. Moreover, as biometrics are non-secrets,
their “theft” does not require breaking into digital systems—thus the criticality of ensur-
ing fresh samples bound to individuals, and trusted input channels. Aside from this, the
security of biometrics is often over-stated—even uniqueness of biometric characteristics
across individuals (which measurement limitations reduce) would not preclude circum-
vention; security often depends more on system implementation details than modality.

Example (iPhone fallback authentication). Biometric authentication is generally con-
sidered stronger protection than short numeric passwords (PINs). In 2013, iPhone finger-
print authentication replaced (four-digit) login PINs. Face recognition on 2017 iPhones
replaced this using 3D face models. If a PIN is the fallback for such systems (if the bio-
metric fails to recognize the user after a few tries), then the overall system is no stronger

3.5. Biometric authentication 73

than this fallback.7 Fraudulently entering a PIN does, however, require phone possession.
SUMMARY. Biometrics offer usability advantages, have some deployability disadvan-

tages, are generally less secure than believed, and have failure modes with severe negative
externalities (i.e., consequences for unrelated parties or systems). Thus, biometrics are
by no means a “silver bullet” solution. Their suitability depends, as usual, on the target
environment of use; they suit supervised environments better than remote authentication.

BIOMETRIC PROCESS: ENROLLMENT AND VERIFICATION. A biometric modal-
ity is implemented by selecting a suitable set of measurable features—e.g., for finger-
prints, the arches, loops and whorl patterns formed by skin ridges, their length, relative
locations and distances between them. For each user (account), several sample biometric
measurements are taken in an enrollment phase. Features are extracted to build a refer-
ence template. For subsequent user authentication, a freshly taken sample is compared to
the template for the corresponding implied or asserted account, and a matching score s is
computed; higher scores indicate higher similarity, e.g., s = 0 could denote no similarity,
with s = 100 denoting 100% agreement. A threshold t is set (discussed below). Then if
s≥ t, the system declares the sample to be from the same individual as the template.

Exercise (Biometric system flow chart). Illustrate the process of biometric enrollment
and verification in a flow-chart relating architectural components (hint: [36, Figure 1]).

FALSE REJECTS, FALSE ACCEPTS. Two types of errors occur in biometric systems.
In a false reject, a legitimate user’s new sample is declared to not match their own tem-
plate. In a false accept, an imposter’s sample is (wrongly) declared to match the legitimate
user’s template. The frequency of these errors depends on both the threshold t and system
limitations (inaccuracies in sampling, measurement and feature representation). Measure-
ment accuracy is affected by how user features present to sensors; environmental factors
also come into play, e.g., dry skin from cold weather impacts fingerprint readings.

A stricter threshold (larger t, requiring stronger matches) results in more false rejects,
but fewer false accepts; this negatively affects usability and availability, but improves
security. A looser tolerance (smaller t, accepting weaker matches) results in fewer false
rejects, but more false accepts; this improves usability and availability for legitimate users,
but obviously decreases security. What is acceptable as a tradeoff between false accepts
and false rejects depends on the application; t is adjusted to suit application scenarios.
High-security (security-sensitive) applications demand stricter matching, tolerating more
false rejects in order to preserve security; low-security applications prioritize usability
over security, setting looser tolerances in order to reduce false rejects.

FALSE ACCEPT/REJECT RATES. Fixing a threshold t and legitimate user L with
reference template XL, let XV denote the biometric samples to be verified. The false ac-
cept rate (FAR) is the probability the system declares XV matches XL when in fact XV is
not from L; this assumes sampling over the user population. Theoretically, to determine
a system FAR, the above could be computed over all users L and reported in composite.
Aside: FAR reflects random sampling, but we expect serious attacks do better than using
random samples in impersonation attempts. This may be viewed as reflecting naive at-

7Recall we want equal-height fences (P13 DEFENSE-IN-DEPTH); cf. recovery channels (Section 3.3).

74 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

ML	=	mean	(average)		
matching	score	of	legi4mate	user	L	

Trading	off	between	false	accepts	and	false	rejects.		The	two	curves	are	idealized	
probability	distribu4ons	for	the	intruder	and	legi4mate	user	scores.		
(For	the	y	axis,	think:	number	of	events	y	that	get	matching	score	x=s)	

	

MI =	mean	(average)		
matching	score	of	intruder	I

intruder		
distribu4on	DI 	

legi4mate	user	
distribu4on	DL 		

match	threshold	t	(s ≥ t is	a	match)	

x=	t	

adjust		t	

matching	score	s	

false	rejects		
(of	L)	 false	accepts	

	(of	I)

y =
(prob.	p
of	score	
x = s)

Figure 3.6: Biometric system tradeoffs. Curves model probability distributions for an
intruder and legitimate user’s matching scores; higher scores match the user’s biometric
template better. The y axis reflects how many biometric samples get matching score x = s.

tacks, or benign errors. Security researchers thus view FAR as misleadingly optimistic,
giving more weight to resilience under malicious scenarios (“circumvention”, below).

The false reject rate (FRR) is the probability of a false reject, i.e., prob(system de-
clares XV does not match XL, when sample XV is actually from L); sampling is over re-
peated trials from user L. The equal error rate (EER) is the point at which FAR = FRR
(Fig. 3.7). Although unlikely to be the preferred operational point in practice, EER is used
for simplified single-point comparisons—the system with lower EER is preferred.

TWO-DISTRIBUTION OVERLAP: USER/INTRUDER MATCH SCORES. For a fixed
user L with template XL, two graphs illustrate how altering the threshold t trades off false
accepts and false rejects. The first (Fig. 3.6) has x-axis giving matching score of samples
(against XL), and y-axis for probability of such scores across a large set of samples. Two
collections of samples are shown, giving two probability distributions: DI (on left) for
intruder samples, DL (on right) for samples from user L. Each value t defines two shaded
areas (shown), respectively corresponding to false rejects and false accepts; moving t left
or right changes the relative sizes of these areas (trading false rejects for false accepts).
Noting each shaded area as a percentage of its corresponding distribution and interpreting
this as a rate allows a second graph to be drawn (Fig. 3.7, left). Its x-axis denotes FAR,
y-axis FRR, and curve point (x,y) indicates FRR = y when FAR = x. Each point implicitly
corresponds to a value t in the system of the first graph. The DET graph (detection error
tradeoff) thus shows a system’s operating characteristics (tuning options) across implicit
values t. Such analysis is common in binary classifier systems. DET graphs are closely
related to relative/receiver operating characteristic curves or ROC curves (Fig. 3.7, right).
Both arise in analyzing four diagnostic outcomes of a binary classifier (true/false positive,

3.5. Biometric authentication 75

DET	graph	(Detec.on	Error	Tradeoff)	for	3	systems.		And	ROC	curve.	
In	the	IDS	scenario	(Chapter	11)	slightly	different	terminology	is	used:	TRR	is	True	
Posi.ve	Rate	(TPR),	FRR	becomes	False	Posi.ve	Rate	(FPR).	

	

EER	(equal		
error	rate)				

False	
Reject	
Rate	
(FRR)	

2
3

False	Accept	Rate	(FAR)	
	1

True	
Reject	
Rate	
(TRR)	

ROC	curves		
(model)

False	Reject	Rate	(FRR)	

1.0	DET	Graph
B

A

Figure 3.7: DET graph and ROC curve. These depict a system’s characteristics for
different values of a decision threshold t, and allow comparisons between systems. If EER
is used as a single comparison point, System 2 is preferred. System 3’s FRR decreases
slowly as parameters are adjusted to admit a higher FAR; in contrast, System 1’s FRR
decreases more rapidly in return for an increased FAR. An upper-left ROC curve is better
(A). In binary classification of events in the intrusion detection scenario (Chapter 11), the
analogous terminology used is True/False Positive Rate, and True/False Negative Rate.

true/false negative). DET graphs plot the two error outcomes.
EVALUATING BIOMETRICS USING STANDARD CRITERIA. To evaluate and com-

pare biometric authentication systems, a suite of properties and standardized criteria are
used. Basic requirements must first be met for a modality to be given serious considera-
tion. The following aspects of a modality’s characteristics are considered.

• universality: do all users have the characteristic? This relates to failure-to-enroll.

• distinguishability: do the characteristics differ sufficiently across pairs of users to
make benign matches unlikely? This requires sufficient variability in measurable fea-
tures, and impacts false accept rates.

• invariance: are characteristics stable over time (even for behavioral biometrics)?

• ease-of-sampling: how easily are samples obtained and measured? For example, con-
sider DNA vs. fingerprints. Retinal scans typically involve contact with an eyepiece.
Physical biometrics may be obscured (e.g., by hair, glasses).

Beyond basic requirements, other criteria important for use in practice are as follows.

• accuracy: metrics discussed earlier include FAR, FRR, EER, FTE-rate, FTC-rate (all
for selected thresholds t). These reflect operation in anticipated or target operating
environments and conditions, albeit with benign participants.

• cost: this includes time (sampling; processing), storage, hardware/software costs.

• user acceptance: do users willingly use the system? Some users worry about privacy
of biometric data in general, or its use for tracking. Examples of modality-specific con-
cerns are invasiveness (e.g., discomfort about light or objects near the eyes—for retinal
scans, users must peer into eyepieces that send visible light into the eye), and nega-
tive cultural associations (some cultures associate fingerprinting with implied criminal
activity). This relates to principle P11 (USER-BUY-IN).

76 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

• attack-resistance: can the system avoid adversarial false accepts, i.e., resist user im-
personation (spoofing), substitution, injection, or other attempted circumvention?
CIRCUMVENTION: ATTACKS ON BIOMETRIC AUTHENTICATION. The basic se-

curity question for a biometric system is: How easily can it be fooled into accepting an
imposter? This asks about malicious false accepts, whereas FAR measures benign false
accepts. Related questions are: What attacks work best, are easiest to mount, or most
likely to succeed? How many authentication trials are needed by a skilled attacker? These
questions are harder to address than those about performance measures noted above.

‡Exercise (Circumventing biometrics). (i) Outline generic system-level approaches to
defeating a biometric system, independent of the modality (hint: [35, Fig.9]). (ii) For each
of five selected modalities from Table 3.2, summarize known modality-specific attacks.
(iii) For which modalities are liveness detectors important, or possible?

BIOMETRICS: AUTHENTICATION VS. IDENTIFICATION. This section has con-
sidered biometrics mainly for user authentication, e.g., to replace passwords or augment
them as a second factor. In this usage, a username (account) is first asserted, then the
biometric sample is matched against the (single) corresponding user template. An alter-
nate usage is user identification (i.e., without asserting specific identity); the system then
must do a one-to-many test—as explained in this chapter’s first paragraph. For local iden-
tification to a laptop or smartphone, the number of accounts registered on that device is
typically small; access is granted if any match is found across registered accounts, and the
one-to-many matching has relatively negligible impact on computation (time) or security.
Relieving the user of the task of entering a username improves convenience.

However, for systems with large user bases, one-to-many matching is a poor fit with
access control applications. The probability of a benign match between a single attacker-
entered sample and any one of the many legitimate user templates is too high. The natural
application of “user identification” mode is, unsurprisingly, identification—e.g., to match
a target fingerprint against a criminal database, or use video surveillance face recognition
to match crowd faces against a targeted list (the shorter the better, since the latter case is
many-to-many). The issue of false accepts is handled here by using biometric identifica-
tion as the first-stage filter, with human processing for second-stage confirmation.

‡Exercise (Comparing modalities). Select six biometric modalities from Table 3.2,
plus two not listed. (i) For each, identify primary advantages and limitations. (ii) Using
these modalities as row labels, and bulleted criteria above as column labels, carry out a
qualitative comparison in a table, assigning one of (low, medium, high) to each cell; word
the criteria uniformly, such that “high” is the best rating. (iii) For each cell rated “low”,
briefly justify its rating in one sentence. (Hint: [36], [10].)

3.6 ‡Password managers and graphical passwords

Password managers, including those that auto-fill web site username-password pairs, store
and retrieve passwords as a means to cope with overwhelming numbers of passwords.8

8Alternate strategies include regularly relying on password resets, and single sign-on means (Chapter 4).

3.6. ‡Password managers and graphical passwords 77

Instead of remembering many passwords, a user remembers one master password. It
provides access to the others. Efficiency and usability improve, with reduced memory
burden. Resilience to phishing improves if the tool records the domain associated with
outgoing passwords, and disallows (or warns) on subsequent attempts to send a password
to a domain not previously associated. Ideally, security improves by allowing users to put
more cognitive energy into choosing and remembering a single master password with high
guessing-resistance, while random (unguessable) individual site passwords can be used as
they need no longer be remembered. In practice, master passwords may be weaker than
hoped, and the individual site passwords managed remain not only static (thus replayable)
but often remain user-chosen (thus guessable) for reasons explained below. Overall, pass-
word managers thus deliver fewer security advantages than expected, while introducing
new risks (below); their main advantage is improved usability.

SOFTWARE PACKAGING. A password manager may be integrated as an operating
system utility (macOS Keychain uses the OS login password as master password), or be
a stand-alone client application, a browser built-in feature or plug-in/add-on, or a cloud-
based service. Some managers synchronize passwords across devices, i.e., make them
accessible from (stored encrypted on) multiple designated user devices; otherwise, the
passwords managed are available only on a primary device.

PASSWORD MANAGER APPROACHES. The two main approaches are as follows:

• password wallet (or vault): here the tool manages an existing collection of passwords,
automatically selecting the password needed based on prior association with the do-
main of use. Passwords are stored in the wallet individually encrypted under a pass-
word derived from the master password; poorly designed tools leave them plaintext.
The master password is entered at the start of each manager session (e.g., start of day);
caching it allows later use without re-entry by the user. Since the tool now remembers
site passwords rather than the user, and can generate long, random passwords, the main
barriers to making all site passwords unguessable should be gone; but in practice, wal-
lets typically manage pre-existing passwords, because “migrating” existing passwords
site-by-site to new random passwords consumes user time. Thus many password wal-
lets manage existing (guessable) passwords. The wallet is stored on the local device
in client-side tools, or at a server in cloud-based tools.

• derived passwords: here application-specific or site-specific passwords are derived
from a master password plus other information such as the target domain. This pro-
vides some protection against phishing attacks; a rogue site attracting a target user re-
ceives the hash value H(master, rogue.domain.com) rather than the authorizing string
H(master, true.domain.com) that allows account access on the true domain. Derived
site passwords (vs. user-chosen) can increase guessing-resistance through (client-side)
iterated hashing, and protect against pre-computed dictionary attacks by using user-
specific salts (Section 3.2).

Exercise (Offline attack on master password). The phishing protection just noted comes
with a risk: a rogue site may mount an offline guessing attack to recover a master pass-
word. Explain how this is done, and what factors affect the likelihood of attacker success.

78 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

SECURITY AND RISKS. Password managers are password “concentrators”, thus also
concentrating risk by creating a single point of failure and attractive target (recall princi-
ple P13, DEFENSE-IN-DEPTH). Threats to the master password include capture (e.g., by
client-side malware, phishing, and network interception), offline guessing (user-chosen
master passwords), and online guessing in the case of cloud-based services. Individual site
passwords managed, unless migrated to random passwords, remain subject to guessing at-
tacks. Managers thus expose new attack surface (cf. P1 SIMPLICITY-AND-NECESSITY),
but reduced user entry of site passwords may lower susceptibility to keylogger attacks.

RISK IF PASSWORD MANAGER FAILS. Once a password generator is used to gen-
erate or remember passwords, users rely on it (rather than memory); if the tool becomes
unavailable or malfunctions, any password recovery mechanisms in place through a web
site may allow recovery of (some of) the managed passwords. However, typically no such
recovery service is available for the master password itself, nor any managed passwords
used for password-derived keys for stand-alone applications, e.g., local file/disk encryp-
tion. If access to such a password is lost, you should expect the locally encrypted files to
be (catastrophically) unrecoverable.

COMPATIBILITY WITH EXISTING PASSWORD SERVERS. An advantage of pass-
word wallets for managing existing passwords is that they introduce no server incompat-
ibilities and thus can be deployed without any server-side changes or cooperation. In the
case of generating new (random) passwords, both password wallet managers and derived-
password managers must satisfy server-defined password composition policies—and au-
tomatically generated passwords will not always satisfy policies on the first try. Thus
derived-password managers cannot regenerate site passwords on the fly from master pass-
words alone; they may still need to store, for each user, site-specific information beyond
standard salts, as a type of additional salt to satisfy site-specific policies. As another
compatibility issue, some sites disallow auto-filled passwords.

Exercise (Analysis and user study of password managers). For each of (i) PwdHash,
and (ii) Password Multiplier, answer the following: (a) Explain the technical design of this
manager tool, and which manager approach it uses. (b) Summarize the tool’s strengths
and weaknesses related to each of: security, usability, deployability. In particular for
usability, describe how users invoke the tool to protect individual site passwords, and for
any automated actions, how users are signaled that the tool is operating. (c) Describe
how the tool performs on these standard password management tasks: day-to-day account
login, password update, login from a new device, and migration of existing passwords to
those compatible with the manager tool. (Hint: [15].)

GRAPHICAL PASSWORDS: OVERVIEW. Like password managers, graphical pass-
word schemes aim to ease the burden of too many passwords, here by schemes that depend
in some way on pictures or patterns. Like regular passwords, a graphical password is en-
coded to a string that the system can verify. The idea is that because human memory is
better for pictures, graphical passwords might impose a lighter memory burden than text
passwords; and security might also be increased, if this allows users to choose harder-to-
guess passwords. Another motivation is to improve input usability on mobile phones and
touchscreen devices, where typing is less convenient than on desktop machines.

3.7. ‡CAPTCHAs (humans-in-the-loop) vs. automated attacks 79

CLASSES OF GRAPHICAL PASSWORD SCHEMES. There are three basic classes.
1. Pure recall. The user essentially reconstructs a pattern starting from a blank sheet. As

a simple example, Android touchscreen devices commonly use a swipe pattern over a
nine-dot background; this replaces use of a login PIN or password.

2. Cued recall. The user is aided by a graphical cue. For example, the user is presented
with a picture and asked to choose five click-points as their password. The user must
later re-enter those points (within reasonable tolerance) to gain account access.

3. Recognition schemes. The users must recognize a previously seen image (or set of im-
ages). For example, a user is presented with four panels sequentially, each with nine
faces: eight distractors and one face familiar to the user (a set of familiars is selected
during registration). The user must click on a familiar face in each of the four panels.
Other sets of common objects can be used instead of faces, e.g., house fronts. Cog-
nitive psychology research indicates that people are better at recognizing previously
encountered items (recognition memory) than in tasks involving (pure) recall.

ANALYSIS. Study of graphical password schemes has found the following:
a) The best among graphical password proposals offer minor usability (memorability)

improvements. In some cases this is due to strategies that could similarly be used with
text passwords (e.g., cued recall). Many proposals require significant training, longer
password registration phases, and moderately longer password entry times.

b) Promised security improvements are often elusive due to the tendency of users to
choose predictable graphical passwords—some are typically much more popular than
others—just as users choose predictable text passwords. In contrast, the ideal is
equiprobable passwords from a suitably large password space—e.g., for text pass-
words, consisting of characters chosen truly at random; for cryptographic keys, the
ideal is truly random secret bit strings.

c) Overall, any advantages of graphical passwords over text passwords have, to date, been
insufficient to displace text passwords in general, an exception being on smartphones.

From a security viewpoint, the simplest graphical password schemes boil down to fixed
authentication strings, which, if captured, are replayable like captured text passwords.
More compelling benefits appear necessary to displace text passwords and alternatives.

3.7 ‡CAPTCHAs (humans-in-the-loop) vs. automated attacks

Free web services are easy targets for automated programs, which might, e.g., try to ac-
quire in bulk free e-mail accounts (e.g., to send spam email), or make bulk postings of
spam or malware to online discussion boards. A countermeasure is to present a task rela-
tively easily done by humans, but difficult for computer programs—to distinguish humans
from malicious programs (“robots” or bots). Thus many sites began to ask users to type
in text corresponding to distorted character strings. This is an example of a CAPTCHA9

9The acronym originated from Completely Automated Public Turing test to tell Computers and Humans
Apart, but as common implementations are often proprietary, the middle part may better be Program to Tell.

80 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

or Automated Turing Test (ATT). These are often based on character recognition (CR),
audio recognition (AUD), image recognition (IR), or cognitive challenges involving puz-
zles/games (COG). Below we see how CAPTCHAs can stop automated online guessing.

As noted earlier, to mitigate online guessing attacks, a server may rate-limit the num-
ber of online login attempts. However, if account “lock-out” results, this inconveniences
the legitimate users of attacked accounts. A specific attacker goal might even be, e.g.,
to lock out a user they are competing with precisely at the deadline of an online auction.
A defensive alternative is to make each login guess “more expensive”, by requiring that
a correct ATT response accompany each submitted password—but this inconveniences
legitimate users. The cleverly designed protocol outlined next does better.

PINKAS-SANDER LOGIN PROTOCOL. The protocol of Fig. 3.8 imposes an ATT

on only a fraction p of login attempts (and always when the correct password is entered
but the device used is unrecognized). It assumes legitimate users typically log in from a
small set of devices recognizable by the server (e.g., by setting browser cookies or device
fingerprinting), and that any online dictionary attack is mounted from other devices. De-
vice recognition is initialized once a user logs in successfully. Thereafter the legitimate
user faces an ATT only when either logging in from a new device, or on a fraction p of
occurrences upon entering an incorrect password.

TWO TECHNICAL DETAILS. In Fig. 3.8, note that requiring an ATT only upon entry
of the correct password would directly signal correct guesses. Following an adjunct to
principle P3 (OPEN-DESIGN), the protocol refrains from disclosing such free information
to an attacker’s benefit. Also, whether to require an ATT for a given password candidate
must be a deterministic function of the submitted data, otherwise an attack program could
quit any login attempt triggering an ATT, and retry the same userid-password pair to see
whether an ATT is again required or if a “login fails” indication results.

To an attacker—expected to make many incorrect guesses—imposing an ATT on even

1 fix a value for system parameter p, 0 < p≤ 1 (e.g., p = 0.05 or 0.10)
2 user enters username-password pair
3 if (user device has cookie) then server retrieves it endif
4 if (entered username-password correct) then
5 if (cookie present & validates & unexpired & matches username) then
6 “login passes”
7 else % i.e., cookie failure
8 ask an ATT; “login passes” if answer correct (otherwise “login fails”)
9 endif
10 else % i.e., incorrect username-password pair
11 set AskAnATT to TRUE with probability p (otherwise FALSE) †
12 if (AskAnATT) then
13 ask an ATT; wait for answer; then, independent of answer, say “login fails”
14 else immediately say “login fails” endif
15 endif
Figure 3.8: Protocol to counter online dictionary attacks (simplified Pinkas-Sander [51]).
†Setting is a deterministic function of userid-password pair (same each time for that pair)

3.8. ‡Entropy, passwords, and partial-guessing metrics 81

a small fraction of these (e.g., 5%) is still a large cost. The attacker, assumed to be
submitting guesses from an unrecognized machine, must always “pay” with an ATT on
submitting a correct guess, and must similarly pay a fraction p of the time for incorrect
guesses. But since the information available does not reveal (before answering the ATT)
whether the guess is correct, abandoning an ATT risks abandoning a correct guess.

Exercise (Pinkas-Sander password protocol analysis). This protocol (Fig. 3.8) can be
analyzed under two attack models: (i) an automated program switches over to a human at-
tacker to answer ATTs; (ii) the program makes random guesses as ATT answers, assuming
an ATT answer space of n elements (so an ATT guess is correct with probability 1 in n). To
simplify analysis, assume a space of S equiprobable passwords. (a) Under model (i), for
an optimal attacker, determine the expected number of ATTs answered before successfully
guessing a password; express your answer as a function of p and S, and assume an attack
on a single account. (b) Under model (ii), determine the expected number of password
guesses needed before success, as a function of p, S and n. (Hint: [51].)

CAPTCHA FUTURES. For several reasons, the ongoing value of CAPTCHAs in secu-
rity is unclear. For many types of CAPTCHAs, automated solvers are now so good that
CAPTCHA instances sufficiently difficult to resist them are beyond the annoyance and
complexity level acceptable for legitimate users—so these CAPTCHAs cease to be useful
Turing Tests. The efficacy of CR CAPTCHA solvers in particular has resulted in more IR

CAPTCHAs. Another attack on CAPTCHAs is to maliciously outsource them by redirection
to unsuspecting users. Similarly, the core idea of distinguishing humans from bots is de-
feated by redirecting CAPTCHAs to willing human labour pools—“sweat shops” of cheap
human solvers, and Amazon Mechanical Turkers.

Example (Google reCAPTCHA). In 2014, the Google reCAPTCHA project replaced
CAPTCHAs with checkboxes for users to click on, labeled “I’m not a robot”. A human-
or-bot decision is then made from analysis of browser-measurable elements (e.g., key-
board and mouse actions, click locations, scrolling, inter-event timings). If such first-level
checks are inconclusive, a CR or IR CAPTCHA is then sent. In 2017 even such checkboxes
were removed; the apparent trend is to replace actions triggered by requesting clicking
of a checkbox by pre-existing measurable human actions or other recognition means not
requiring new explicit user actions.

3.8 ‡Entropy, passwords, and partial-guessing metrics

This supplemental section discusses information-theoretic (Shannon) entropy, guessing
entropy, and partial-guessing metrics useful to understand guessing attacks on user-chosen
passwords. Historically, common misunderstandings about entropy have led to incorrect
models, assumptions and conclusions about password security. We aim to avoid this.

Example (Data, information representation, and entropy). A 16-bit word might be
used to convey four values (Table 3.3), representing events that are equiprobable over
a large number of samples. The same information can be conveyed in 2 bits. For the
given probabilities, in information theory we say there are two bits of entropy. Below, we

82 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

Information Probability Hex representation Binary alternative
red 0.25 0000 00

green 0.25 00FF 01
blue 0.25 FF00 10
black 0.25 FFFF 11

Table 3.3: Alternative representations for conveying four known values. The same infor-
mation is conveyed, whether two bytes of data are used to represent it, or two bits.

explain further, using password distributions both for concreteness and relevance.
SHANNON ENTROPY. Let qi > 0 be the probability of event xi from an event space

X of n possible events (1≤ i≤ n, and ∑qi = 1). In our exposition, xi = Pi will be a user-
chosen password from a space of n allowable passwords, with the set of passwords chosen
by a system’s m users considered an experimental outcome (e.g., consider the passwords
being drawn from a known distribution). In math-speak, a random variable X takes value
xi = Pi with probability qi, according to a probability distribution DX . We write X DX←− X
and DX : qi→ xi. DX models the probability of users choosing specific passwords, e.g., as
might be derived from an unimaginably large number of real-world iterations. Now the
Shannon entropy of this discrete distribution is defined as:10

H(X) = H(q1,q2, ...,qn) =
n

∑
i=1

qi · lg(1/qi) =−
n

∑
i=1

qi · lg(qi) (3.5)

(Note that only the probabilities qi are important, not the events themselves.) Here the
units are bits of entropy, lg denotes a base-2 logarithm, and by convention 0 · lg(0) = 0 to
address lg(0) being undefined. H(X) measures the average uncertainty of X . H(X) turns
out to be the minimum number of bits needed (on average, across the probability distri-
bution) to convey values X = xi, and the average wordlength of a minimum-wordlength
code for values of X .

INTERPRETATION OF ENTROPY. To help understand the definition of H(X), for
each outcome xi define I(xi) = −lg(qi) as the amount of information conveyed by the
event {X = xi}. It follows that the less probable an outcome, the more information its
observation conveys; observing a rare event conveys more than a common event, and
observing an event of probability 1 conveys no information. The average (expected value)
of the random variable I is then H(X) = EX(IX) = EX(−lg(qi)). Viewing qi as a weight
on lg(qi), H(X) is now seen to be the expected value of the log of the probabilities.

ENTROPY PROPERTIES. The following hold for H(X) with event space of size n:
1. H(X) ≥ 0. The minimum 0 occurs only when there is no uncertainty at all in the

outcome, i.e., when qi = 1 for some i (forcing all other q j to 0).
2. H(X) ≤ lg(n). The maximum occurs only when all qi =

1
n (all events equiproba-

ble). Then H(X) = ∑
n
i=11/n · lg(n) = lg(n). Thus a uniform (“flat”) distribution max-

imizes entropy (gives greatest uncertainty), e.g., randomly chosen cryptographic keys
(whereas user-chosen passwords have highly skewed distributions).

10Here in Section 3.8, following tradition, H denotes the Shannon entropy function (not a hash function).

3.8. ‡Entropy, passwords, and partial-guessing metrics 83

3. Changes towards equalizing the qi increase H(X). For q1 < q2, if we increase q1 and
decrease q2 by an equal amount (diminishing their difference), H(X) rises.

Example (Entropy, rolling a die). Let X be a random variable taking values from
rolling a fair eight-sided die. Outcomes X = {1,2,3,4,5,6,7,8} all have qi =

1
8 and

H(X) = lg(8) = 3 bits. For a fair six-sided die, qi =
1
6 and H(X) = lg(6) = 2.58 bits.

If the six-sided die instead has outcomes X = {1,2,3,4,5,6} with resp. probabilities
1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
32 , then H{1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
32} =

1
2 · 1 + 1

4 · 2 + 1
8 · 3 + 1

16 · 4 + 2(1
32 · 5) =

1.9375 bits, which, as expected, is less than for the fair die with equiprobable outcomes.
Exercise (Entropy, rolling two dice). Let X be a random variable taking values as the

sum on rolling two fair six-sided dice. Find the entropy of X . (Answer: 3.27 bits.)
Example (binary entropy function). Consider a universe of n = 2 events and corre-

sponding entropy function H = −(p · lg(p)+ q · lg(q)), where q = 1− p. A 2D graph
(Fig. 3.9) with p along x-axis [0.0, 1.0] and H in bits along y axis [0.0, 1.0] illustrates that
H = 0 if and only if one event has probability 1, and that H is maximum when qi =

1
n .

This of course agrees with the above-noted properties. (Source: [55] or [42, Fig.1.1].)
SINGLE MOST-PROBABLE EVENT. Which single password has highest probability

is a question worth studying. If an attacker is given exactly one guess, the optimal strategy
is to guess the most-probable password based on available statistics. A company might an-
alyze its password database to find the percentage of users using this password, to measure
maximum expected vulnerability to a single-guess attack by an “optimal attacker” know-
ing the probability distribution. The expected probability of success is q1 = maxi(qi); this
assumes the target account is randomly selected among system accounts. A formal mea-
sure of this probability of the most likely single event is given by the min-entropy formula:

H∞(X) = lg(1/q1) =−lg(q1) (3.6)

If qi =
1
n for all i, then H∞(X) =−lg(1

n) = lg(n), matching Shannon entropy in this case.

0															0.2												0.4												0.6											0.8												1.0	

0.4	

0.6	

0.8	

0.2	

1.0	

Figure 3.9: Binary entropy function for n = 2 events. The x-axis is the probability p of
one of the events; y = H(x) =−x · log2(x)+(1− x)log2(1− x), in bits.

84 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

Example (Most-probable password). Suppose the most popular password in a dis-
tribution is “Password1”, with 1% of users choosing it. Knowing this, but not which
account(s) use this password, an attacker tries it on a randomly chosen account from this
distribution; assume account names are easily obtained. The attacker then has a 1% prob-
ability of success with this one guess.

Example (Optimal breadth-first guessing). If passwords are ordered P1, P2, ... in high-
est to lowest probability order, then for an attacker allowed multiple online guesses, the
optimal (breadth-first) strategy to minimize expected time to success is to guess P1 on
all accounts, then P2 on all accounts, and so on. If 1% of users use P1 per the previous
example, then success is expected (50% chance) after guessing P1 on 50 accounts.

GUESSWORK (GUESSING FUNCTION). With notation as above, let qi ≥ qi+1, mod-
eling an optimal guessing-attack order. The guessing index g(X) over a finite domain X
assigns a unique index i≥ 1, the guess number, to each event X = xi under this optimal or-
dering. Then for X DX←− X (X drawn from the event universe according to distribution DX ,
above), the expected (on average) number of trials to get a YES on asking “Is X = xi?”,
for sequential candidates xi tested in optimal order, is given by the guessing function

G1(X) = E[g(X)] =
n

∑
i=1

i ·qi (units = number of guesses) (3.7)

Like H(X), G1 gives an expectation averaged over all events in X . Thus its measure is
relevant for an attack executing a full search to find all user passwords in a dataset—but
not one, e.g., quitting after finding a few easily guessed passwords. If qi = 1/n for all i,

G1(n equally probable events) =
n

∑
i=1

i ·1/n = (1/n)
n

∑
i=1

i = (n+1)/2 (3.8)

since ∑
n
i=1 i = n(n+1)/2. Thus in the special case that events are equiprobable, success

is expected after guessing about halfway through the event space; note this is not the case
for user-chosen passwords since their distributions are known to be heavily skewed.

Example (Guesswork skewed by outliers). As a guesswork example, consider a sys-
tem with m = 32 million ≈ 32 · 220 users, whose dataset R ⊂ X of m non-unique user
passwords has a subset S ⊂ R of 32 elements that are 128-bit random strings (on average
1 per 220 elements in R) . Let U2128 denote the set of all 128-bit random strings. From
(3.8), G1(U2128)> 2127. Per individual password in S we thus expect to need at least 2127

guesses. How does this affect G1 overall? From (3.7) and averaging estimates,11 it follows
that G1(R) > 2127 · 2−20 = 2107 guesses independent of any passwords outside S . Thus
the guesswork component from difficult passwords swamps (obscures) any information
that G1 might convey about easily guessed passwords. (Motivation: [7, Ch.3].)

11G1’s sum in (3.7) assigns, to each event in X , a guess-charge i weighted by a probability qi, with optimal
order dictating qi ≥ qi+1. For the 32 elements in S alone, we expect to need 25 ·2127 = 2132 guesses; but if
the average guess-charge for each of the sum’s first m terms were 2107, the guesswork component for these
m < n terms would be m ·2107 = 2132. All terms in the sum are non-negative. It follows that G1(R)> 2107.

3.8. ‡Entropy, passwords, and partial-guessing metrics 85

UTILITY OF ENTROPY AND GUESSWORK. For user-chosen passwords in practice,
entropy and guesswork mislead us—because their metrics do not model real attacks. Esti-
mating attacker success involves assuming a guessing strategy, then projecting its success
using estimated password probabilities. The historical entropy and guesswork metrics
implicitly assume attackers guess through entire password spaces. In contrast, commonly
used attack tools try passwords in priority order, i.e., (estimated) highest probability first,
over only a subset of the password space. As a secondary issue, computing entropy and
guesswork requires probabilities for complete password spaces, yet it is difficult to ob-
tain even plausible estimates for probability distributions of real-world passwords. Most
analysis to date has been on large “leaked” (stolen, then published) datasets. This has
increased knowledge, especially for building password denylists (Section 3.2). But com-
plete probability distributions DX for password spaces remain beyond reach.

METRICS USEFUL IN PRACTICE. For equiprobable event spaces, such as randomly
chosen cryptographic keys and system-assigned random passwords, Shannon entropy
H(X) is a useful metric; but its use for passwords too often results in falsely assuming
that user-chosen passwords are random and that attacks proceed by uninformed exhaus-
tive search. Also, H(X) cannot measure the strength of single passwords or subsets—as a
sum over all events, it gives an average over the full space. Thus it cannot model real at-
tacks that, as just noted, guess in priority order and “quit early” to avoid expending effort
on hard passwords. Guesswork is similarly a full-distribution average subject to distortion
by outliers (example above). So both metrics poorly measure real attacks. Min-entropy
provides useful single-point information, albeit coarse (modeling only a one-guess at-
tack), but does move us towards partial-guessing metrics (next) that are useful as metrics
that compute expectations not over full event spaces, but over partial spaces.

CUMULATIVE PROBABILITY. The first of two partial-guessing metrics we mention
is the cumulative probability of success, with qi as defined above for password space X :

CPS(b) =
b

∑
i=1

qi (3.9)

This is the expected success rate for an attack capable of b guessing trials on an account
from this space. It simply sums the probabilities of the first (highest-probability) b pass-
words, giving the probability fraction (≤ 1.0) these cumulatively cover.

Example (Cumulative probability). Consider the meaning of CPS(10,000) = 0.20 for
a company password database. An administrator finds, from analysis of the database, that
the most popular b = 10,000 distinct passwords are used by 20% of its users: q1 + q2 +
...+q10,000 = 0.20. Then an attacker able to mount b guesses on one account (randomly
chosen from all accounts) might be expected to guess the correct password with probabil-
ity 0.20, or break into 20% of accounts if given b guesses on each account. This might
result from an online attack if the system does not rate-limit login attempts.

GUESS COUNT. A second partial-guessing metric, for qi as above, is the guess count

GC(p) = min{b |
b

∑
i=1

qi ≥ p} (0≤ p≤ 1) (3.10)

86 Chapter 3. User Authentication—Passwords, Biometrics and Alternatives

This gives the number b of per-account guesses needed to find passwords for a proportion
p of accounts, or for one account to correctly guess its password with probability at least
p; or correspondingly, the number of words b in an optimal (smallest) dictionary to do so.

Example (Guess count). Choosing p = 0.20, (3.10) tells us how many per-account
guesses are expected to be needed to guess 20% of accounts (or break into one account,
drawn randomly from system accounts, with probability 0.20). For the previous example’s
scenario, this metric would return a guess count of b = 10,000 (to achieve 20% success).

EXAMPLE USE OF METRICS. Partial-guessing metrics can be used to reason about
choices for password denylist size and rate-limiting. For example, equation (3.9) allows
comparison of the protection offered by denylists of b1 = 1,000 entries vs. b2 = 10,000.
If a system S rate-limits login attempts to b incorrect guesses (e.g., b = 10 or 25) over
time period T , then (3.9)’s probability indicates exposure to online guessing attacks over
T . If in addition S denylists the 10,000 most popular passwords, then the qi used in (3.9)
for this second case should be for passwords beyond the denylist, i.e., starting at q10,001.

3.9 ‡End notes and further reading

The 1985 “Green Book” [19] (rainbow series) discusses system-generated random pass-
words; on password aging it recommends a maximum password lifetime of one year.
Many older Unix systems support password aging. NIST 800-63-2 [11] discusses Equa-
tion (3.1), setting a limit of 100 login attempts over 30 days, and (to avoid lock-out)
still accepting login attempts from allowlisted IP addresses from which successful logins
previously occurred. Secret salts are discussed by Manber [40] and Abadi [1]; attacks
on secret salts (but not on iterated hashing) can be parallelized. Oechslin’s rainbow ta-
bles [50] allow an advanced attack on unsalted passwords, using a time-memory tradeoff;
see also Narayanan [48]. Provos [52] explains a future-adaptable backwards-compatible
hashing scheme whereby a hash iteration count can be increased over time as computing
power increases. Florêncio [24] summarizes password research for systems administra-
tors. Hatzivasilis [33] provides an overview of the 2013–2015 Password Hashing Com-
petition candidates and winner Argon2 [5]; see also the Balloon [6] memory-hard hashing
function. Dürmuth [20] explores offline guessing attacks leveraging parallel-computing
architectures for fast hashing, including GPUs.

From a large-scale empirical study, Bonneau [9] concludes: “it appears next to im-
possible to find secret questions that are both secure and memorable.” The password reset
attack is from Gelernter [28]. The description of passcode generators and Lamport’s OTP
chain is adapted from Menezes [43]; see also Bellcore’s S/KEY one-time password sys-
tem [30, 31]. Bonneau [10] discusses comparative analysis of password alternatives, in-
cluding hardware tokens, biometrics, password managers, and secret questions. Security
Keys [39] are a FIDO-standardized second-factor token originating from Google internal
use. NIST SP 800-63B [29, Part B] makes clear the view of OTP via SMS as a weak
second-factor authentication (2FA), following concerns about large-scale SMS message
redirection and interception; Konoth [38] describes attacks on SMS-based 2FA as leav-

3.9. ‡End notes and further reading 87

ing it “entirely compromised”, including due to cross-platform synchronization features
breaking the assumption of a mobile phone as an independent second factor.

For usability of password managers see Chiasson [15]; Florêncio [25] explores man-
aging password portfolios. Biddle [4] surveys graphical passwords. For CAPTCHAs, Hi-
dalgo [34] gives an authoritative survey; Motoyama [46] explores underground CAPTCHA-
solving economies; Egele [21] discusses CAPTCHA farms that leverage malware. Van
Oorschot [58] extends the usability of the Pinkas-Sander protocol [51] by tracking failed
login counts. Garfinkel [26] surveys usable security work, especially authentication. For
password meters, see de Carné de Carnavalet [17] and zxcvbn [61].

For authoritative surveys on biometrics, see Jain [36, 35]. For effective attacks on
fingerprint systems, including using “gummy bears” (gelatin), see Matsumoto [41]. For
iris recognition, see Daugman [16, 32]. Ballard [3] notes “the evaluation of biometric
technologies is usually conducted under fairly weak adversarial conditions”, encourages
use of more realistic attack models (e.g., “trained” forgers), and demonstrates successful
impersonation attacks on handwriting (a behavioral biometric) using generative attacks
that synthesize forged inputs. For attacks on touchscreen implicit authentication schemes
(another behavioral biometric), see Khan [37]. For background on keystroke dynamics
(latencies), see Monrose [45]. For using biometrics for cryptographic key generation, see
Ballard [2]. For an introduction to ROC analysis, see Metz [44]. For a primer on secure
Internet geolocation, see Muir [47].

Figure 3.9 follows Shannon [55, p.20], who introduces entropy and succinctly derives
basic properties; see also McEliece [42], Garrett [27], Bonneau [7, Ch.3], Cachin [13]
and Ferguson [23]. Weak password subspaces [59] are related to partial-guessing met-
rics and predictable user choices. Heuristics for estimating password strength based on
Shannon entropy, popularized by SP 800-63 [12, Appendix A], were widely used to jus-
tify password composition policies despite explicit warning therein that they were very
rough rules of thumb; the revision 13 years later [29, Part B], mentioned in Section 3.2,
recommends against not only password aging (following [62, 14]), but also against com-
position policies. This followed expositions of the heuristics poorly matching practical
attack strategies—by Weir [60], and Bonneau [8] who also gives a mechanism allowing
collection of password statistics without human access to cleartext databases.

References (Chapter 3)

[1] M. Abadi, T. M. A. Lomas, and R. Needham. Strengthening passwords. SRC Technical Note 1997-033,
DEC Systems Research Center, Palo Alto, CA, 1997. September 4 with minor revision December 16.

[2] L. Ballard, S. Kamara, F. Monrose, and M. K. Reiter. Towards practical biometric key generation with
randomized biometric templates. In ACM Comp. & Comm. Security (CCS), pages 235–244, 2008.

[3] L. Ballard, F. Monrose, and D. P. Lopresti. Biometric authentication revisited: Understanding the
impact of wolves in sheep’s clothing. In USENIX Security, 2006.

[4] R. Biddle, S. Chiasson, and P. C. van Oorschot. Graphical passwords: Learning from the first twelve
years. ACM Computing Surveys, 44(4):19:1–19:41, 2012.

[5] A. Biryukov, D. Dinu, and D. Khovratovich. Argon2: New generation of memory-hard functions for
password hashing and other applications. In IEEE Eur. Symp. Security & Privacy, pages 292–302,
2016.

[6] D. Boneh, H. Corrigan-Gibbs, and S. E. Schechter. Balloon hashing: A memory-hard function provid-
ing provable protection against sequential attacks. In ASIACRYPT, 2016.

[7] J. Bonneau. Guessing Human-Chosen Secrets. PhD thesis, University of Cambridge, U.K., 2012.

[8] J. Bonneau. The science of guessing: Analyzing an anonymized corpus of 70 million passwords. In
IEEE Symp. Security and Privacy, pages 538–552, 2012.

[9] J. Bonneau, E. Bursztein, I. Caron, R. Jackson, and M. Williamson. Secrets, lies, and account recovery:
Lessons from the use of personal knowledge questions at Google. In WWW—Int’l Conf. on World Wide
Web, pages 141–150, 2015.

[10] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The quest to replace passwords: A framework
for comparative evaluation of web authentication schemes. In IEEE Symp. Security and Privacy, pages
553–567, 2012.

[11] W. E. Burr, D. F. Dodson, E. M. Newton, R. A. Perlner, W. T. Polk, S. Gupta, and E. A. Nabbus. NIST
Special Pub 800-63-1: Electronic Authentication Guideline. U.S. Dept. of Commerce. Dec 2011 (121
pages), supersedes [12]; superseded by SP 800-63-2, Aug 2013 (123 pages), itself superseded by [29].

[12] W. E. Burr, D. F. Dodson, and W. T. Polk. NIST Special Pub 800-63: Electronic Authentication
Guideline. U.S. Dept. of Commerce. Ver. 1.0, Jun 2004 (53 pages), including Appendix A: Estimating
Password Entropy and Strength (8 pages). Superseded by [11].

[13] C. Cachin. Entropy Measures and Unconditional Security in Cryptography. PhD thesis, Swiss Federal
Institute of Technology Zurich, Switzerland, May 1997.

[14] S. Chiasson and P. C. van Oorschot. Quantifying the security advantage of password expiration policies.
Designs, Codes and Cryptography, 77(2-3):401–408, 2015.

[15] S. Chiasson, P. C. van Oorschot, and R. Biddle. A usability study and critique of two password man-
agers. In USENIX Security, 2006.

[16] J. Daugman. How iris recognition works. IEEE Trans. Circuits Syst. Video Techn., 14(1):21–30, 2004.

[17] X. de Carné de Carnavalet and M. Mannan. A large-scale evaluation of high-impact password strength
meters. ACM Trans. Inf. Systems and Security, 18(1):1:1–1:32, 2015.

88

References (Chapter 3) 89

[18] P. J. Denning, editor. Computers Under Attack: Intruders, Worms, and Viruses. Addison-Wesley, 1990.
Edited collection (classic papers, articles of historic or tutorial value).

[19] DoD. Password Management Guideline. Technical Report CSC-STD-002-85 (Green Book), U.S.
Department of Defense. 12 April 1985.

[20] M. Dürmuth and T. Kranz. On password guessing with GPUs and FPGAs. In PASSWORDS 2014,
pages 19–38.

[21] M. Egele, L. Bilge, E. Kirda, and C. Kruegel. CAPTCHA smuggling: hijacking web browsing sessions
to create CAPTCHA farms. In ACM Symp. Applied Computing (SAC), pages 1865–1870, 2010.

[22] M. W. Eichin and J. A. Rochlis. With microscope and tweezers: An analysis of the Internet virus of
November 1988. In IEEE Symp. Security and Privacy, pages 326–343, 1989.

[23] N. Ferguson and B. Schneier. Practical Cryptography. Wiley, 2003.

[24] D. Florêncio, C. Herley, and P. C. van Oorschot. An administrator’s guide to Internet password research.
In Large Installation Sys. Admin. Conf. (LISA), pages 35–52. USENIX, 2014.

[25] D. Florêncio, C. Herley, and P. C. van Oorschot. Password portfolios and the finite-effort user: Sustain-
ably managing large numbers of accounts. In USENIX Security, pages 575–590, 2014.

[26] S. L. Garfinkel and H. R. Lipford. Usable Security: History, Themes, and Challenges. Synthesis
Lectures (mini-book series). Morgan and Claypool, 2014.

[27] P. Garrett. The Mathematics of Coding Theory. Pearson Prentice Hall, 2004.

[28] N. Gelernter, S. Kalma, B. Magnezi, and H. Porcilan. The password reset MitM attack. In IEEE Symp.
Security and Privacy, pages 251–267, 2017.

[29] P. A. Grassi et al. NIST Special Pub 800-63-3: Digital Identity Guidelines. U.S. Dept. of Commerce.
Jun 2017, supersedes [11]. Additional parts SP 800-63A: Enrollment and Identity Proofing, SP 800-
63B: Authentication and Lifecycle Management, SP 800-63C: Federation and Assertions.

[30] N. Haller. The S/KEY One-Time Password System. In Netw. Dist. Sys. Security (NDSS), 1994.

[31] N. Haller and C. Metz. RFC 1938: A one-time password system, May 1996. Cf. RFC 1760 (Feb 1995).

[32] F. Hao, R. J. Anderson, and J. Daugman. Combining crypto with biometrics effectively. IEEE Trans.
Computers, 55(9):1081–1088, 2006.

[33] G. Hatzivasilis. Password-hashing status. Cryptography, 1(2):10:1–10:31, 2017.

[34] J. M. G. Hidalgo and G. Á. Marañón. CAPTCHAs: An artificial intelligence application to web security.
Advances in Computers, 83:109–181, 2011.

[35] A. K. Jain, A. Ross, and S. Pankanti. Biometrics: a tool for information security. IEEE Trans. Info.
Forensics and Security, 1(2):125–143, 2006.

[36] A. K. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recognition. IEEE Trans. Circuits
Syst. Video Techn., 14(1):4–20, 2004.

[37] H. Khan, U. Hengartner, and D. Vogel. Targeted mimicry attacks on touch input based implicit authen-
tication schemes. In MobiSys 2016 (Mobile Systems, Applic. and Services), pages 387–398, 2016.

[38] R. K. Konoth, V. van der Veen, and H. Bos. How anywhere computing just killed your phone-based
two-factor authentication. In Financial Crypto, pages 405–421, 2016.

[39] J. Lang, A. Czeskis, D. Balfanz, M. Schilder, and S. Srinivas. Security Keys: Practical cryptographic
second factors for the modern web. In Financial Crypto, pages 422–440, 2016.

[40] U. Manber. A simple scheme to make passwords based on one-way functions much harder to crack.
Computers & Security, 15(2):171–176, 1996.

[41] T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino. Impact of artificial “gummy” fingers on
fingerprint systems. In Proc. SPIE 4677, Optical Security and Counterfeit Deterrence Techniques IV,
pages 275–289, 2002.

90 References (Chapter 3)

[42] R. J. McEliece. The Theory of Information and Coding. In G.-C. Rota, editor, Encyclopedia of Mathe-
matics and Its Applications, volume 3. Addison-Wesley, 1977.

[43] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996. Openly available, https://cacr.uwaterloo.ca/hac/.

[44] C. E. Metz. Basic Principles of ROC Analysis. Seminars in Nuclear Medicine, 8(4):283–298, Oct. 1978.
See also: John Eng, “Receiver Operator Characteristic Analysis: A Primer”, Academic Radiology 12
(7):909–916, July 2005.

[45] F. Monrose, M. K. Reiter, and S. Wetzel. Password hardening based on keystroke dynamics. Int. J. Inf.
Sec., 1(2):69–83, 2002.

[46] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, and S. Savage. Re:CAPTCHAs—
Understanding CAPTCHA-solving services in an economic context. In USENIX Security, 2010.

[47] J. A. Muir and P. C. van Oorschot. Internet geolocation: Evasion and counterevasion. ACM Computing
Surveys, 42(1):4:1–4:23, 2009.

[48] A. Narayanan and V. Shmatikov. Fast dictionary attacks on passwords using time-space tradeoff. In
ACM Comp. & Comm. Security (CCS), pages 364–372, 2005.

[49] NIST. FIPS 112: Password Usage. U.S. Dept. of Commerce, May 1985.

[50] P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In CRYPTO, pages 617–630, 2003.

[51] B. Pinkas and T. Sander. Securing passwords against dictionary attacks. In ACM Comp. & Comm.
Security (CCS), pages 161–170, 2002.

[52] N. Provos and D. Mazières. A future-adaptable password scheme. In USENIX Annual Technical Conf.,
pages 81–91, 1999. FREENIX Track.

[53] J. A. Rochlis and M. W. Eichin. With microscope and tweezers: The Worm from MIT’s perspective.
Comm. ACM, 32(6):689–698, 1989. Reprinted as [18, Article 11]; see also more technical paper [22].

[54] A. D. Rubin. White-Hat Security Arsenal. Addison-Wesley, 2001.

[55] C. Shannon. A mathematical theory of communication. The Bell System Technical Journal, vol.27,
1948. Pages 379–423 (Jul) and 623–656 (Oct).

[56] E. H. Spafford. Crisis and aftermath. Comm. ACM, 32(6):678–687, 1989. Reprinted: [18, Article 12].

[57] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri, D. Kurilova, M. L. Mazurek,
W. Melicher, and R. Shay. Measuring real-world accuracies and biases in modeling password guess-
ability. In USENIX Security, pages 463–481, 2015.

[58] P. C. van Oorschot and S. G. Stubblebine. On countering online dictionary attacks with login histories
and humans-in-the-loop. ACM Trans. Inf. Systems and Security, 9(3):235–258, 2006.

[59] P. C. van Oorschot and J. Thorpe. On predictive models and user-drawn graphical passwords. ACM
Trans. Inf. Systems and Security, 10(4):1–33 (Article 17), 2008.

[60] M. Weir, S. Aggarwal, M. P. Collins, and H. Stern. Testing metrics for password creation policies by
attacking large sets of revealed passwords. In ACM Comp. & Comm. Security (CCS), 2010.

[61] D. L. Wheeler. zxcvbn: Low-budget password strength estimation. In USENIX Security, pages 157–
173, 2016.

[62] Y. Zhang, F. Monrose, and M. K. Reiter. The security of modern password expiration: an algorithmic
framework and empirical analysis. In ACM Comp. & Comm. Security (CCS), pages 176–186, 2010.

https://cacr.uwaterloo.ca/hac/

	User Authentication—Passwords, Biometrics and Alternatives
	Password authentication
	Password-guessing strategies and defenses
	Account recovery and secret questions
	One-time password generators and hardware tokens
	Biometric authentication
	*Password managers and graphical passwords
	*captchas (humans-in-the-loop) vs. automated attacks
	*Entropy, passwords, and partial-guessing metrics
	*End notes and further reading

