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Chapter 4

Authentication Protocols and Key
Establishment

This chapter discusses authentication protocols involving cryptographic algorithms. The
main focus is authenticated key establishment protocols seeking to establish a crypto-
graphic key (secret) for subsequent secure communications, with assurance of the iden-
tity of the far-end party sharing the key. Several mainstream key establishment protocols
are discussed, as well as examples of what can go wrong. We also discuss password-
authenticated key exchange, designed to resist offline attacks even if users choose pre-
dictable passwords, as well as single sign-on (SSO) systems and related federated identity
systems. A main objective is to highlight that even experts find it hard to avoid subtle er-
rors in the design of authentication protocols; software designers should use standardized
protocols and carefully scrutinized software libraries, and fully expect that any protocols
they design themselves will almost surely contain hidden flaws.

As context, recall that Chapter 3 discussed dictionary attacks that used password
hashes to test guesses offline, in order to recover user-chosen passwords. Whereas there
the hashes were from stolen password files, here we discuss related attacks that instead
recover weak secrets (keys derived from user-chosen passwords) by offline testing using
data recorded from messages exchanged in vulnerable key establishment protocols.

4.1 Entity authentication and key establishment (context)

We begin with some context and definitions. A protocol involves an exchange of mes-
sages between parties (devices). Entity authentication is a process to verify the identity
of a communicating party. A cryptographic protocol is a protocol that involves crypto-
graphic techniques (e.g., beyond sending a password itself). An authentication protocol is
a cryptographic protocol that provides entity authentication, authenticated key establish-
ment (below), or both. Figure 4.1 first explains basic claimant-verifier authentication.

Example (Browser-server authentication). Typical web browser-server authentica-
tion involves the server (as claimant or prover) providing evidence to convince the browser
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4.1. Entity authentication and key establishment (context) 93

Basic	claimant-verifier	authen2ca2on.		The	claimant	is	some2mes	also	called	the	prover.	I	both	Alice	and	Bob	prove	their	
iden2ty	to	the	other	party	it	is	mutual	authen2ca2on,	otherwise	it	is	unilateral	authen2ca2on.		W	o?en	denotes	a	
weak	(password-based)	secret,	and	S	a	strong	crypto-strength	secret.		

I	am	Alice,	here	is	some	evidence	
that	I	know	our	shared	Alice-Bob	secret	

	Yes,	but	that	looks	old.	Here’s	a	random	number	

	Okay,	here	is	fresh	evidence	combining	our	
secret	and	the	random	number	you	just	sent	

Bob	(verifier)	

shared	secret:	WAB			

Alice	(claimant)	
	

shared	secret:	WAB		

Figure 4.1: Basic unilateral authentication. The claimant is the party (entity or device)
being authenticated. The party given assurances is the verifier. We may use W to denote
a weak (password-based) secret, and S to denote a crypto-strength random key.

of the server’s legitimacy. This is called unilateral authentication, with one party authen-
ticating itself to another. In mutual authentication, each party proves its identity to the
other; this is largely unused in the standard web protocol (TLS), despite being supported.
If authentication of the browser (user) to the server is desired, this is commonly done by
password-based authentication using an encrypted channel set up in conjunction with the
unilateral authentication. Aside: when a credit card is used for a web purchase, the server
typically does not carry out authentication of the user per se, but rather seeks a valid credit
card number and expiry date (plus any other data mandated for credit approval).

SESSION KEYS. Key establishment is some means by which two end-parties arrange
a shared secret—typically a symmetric key, i.e., a large random number or bitstring—
for use in securing subsequent communications such as client-server data transfer, or
voice/video communication between peers. Such keys used for short-term purposes, e.g.,
a communications session, are called session keys, or data keys (used for encrypting data,
rather than for managing other keys). Key establishment has two subcases, discussed next.

KEY TRANSPORT VS. KEY AGREEMENT. In key transport, one party unilaterally
chooses the symmetric key and transfers it to another. In key agreement, the shared key is
a function of values contributed by both parties. Both involve leveraging long-term key-
ing material (shared secrets, or trusted public keys) to establish, ideally, new ephemeral
keys (secrets that are unrecoverably destroyed when a session ends). Key agreement com-
monly uses variations of Diffie-Hellman (Section 4.3) authenticated by long-term keys.
If session keys are instead derived deterministically from long-term keys, or (e.g., RSA)
key transport is used under a fixed long-term key, then compromise of long-term keys
puts at risk all session keys (see forward secrecy, Section 4.4). Figure 4.2 relates types of
authentication and key establishment algorithms, and cryptographic technologies.

AUTHENTICATION-ONLY, UNAUTHENTICATED KEY ESTABLISHMENT. Some
protocols provide assurances of the identity of a far-end party, without establishing a
session key. Such authentication-only protocols—named to avoid confusion with authen-
ticated key establishment protocols—may be useful in restricted contexts. An example is
local authentication between your banking chip-card and the automated banking machine
you are standing in front of and just inserted that card into. But if authentication-only
occurs across a network at the beginning of a communications session, a risk is that the
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Taxonomy	of	authen.ca.on	and	key	establishment	protocols.	

Authen.ca.on-only	

Key	transport	

unauthen.cated	
Key	agreement	

Symmetric	techniques	
Public-key	techniques	Hybrid	protocols	

authen.cated	

1a																	1c													1b	
2a																	2c													2b	

3a																	3c													3b	
4a																	4c													4b	

5a																	5c													5b	
6a																	6c													6b	

mutual	
unilateral	

Figure 4.2: Authentication and key establishment protocol taxonomy. Hybrid protocols
combine symmetric-key and public-key techniques. Example protocols and categories:
basic Diffie-Hellman (5b), STS (6c), DH-EKE (6c), SPEKE (6b), and Kerberos (4a).

session is “hijacked” after start-of-session authentication, with subsequent data transfer
directed to a different party.1 Whether this is possible depends on the communication
channels and networking protocols used, but is an issue to consider in deciding whether
an authentication-only protocol suits a given application.

Other protocols establish a shared session key with a remote second party, with no
assurances or guarantees as to the identity of that second party. An example of such
unauthenticated key establishment is basic Diffie-Hellman (Section 4.3). This may be
fine against passive attackers (eavesdroppers), but as we will see, problems arise in the
case of active attackers. While it may seem obvious, we state explicitly: if you establish a
shared key with a second party, but don’t have explicit assurances as to the identity of that
party, you may be communicating with (or through) a different party than you believe.

INTEGRATING AUTHENTICATION WITH SESSION KEY ESTABLISHMENT. If key
establishment is to provide some assurance of whom an established key is shared with, it
must involve some means of authentication. Experience has shown that using separate key
establishment and entity authentication protocols, and then trying to glue them together,
tends to end badly; pursuing both functions within one integrated protocol appears nec-
essary to ensure that the party authenticated is the same party that the key is shared with.
Such a combined process is called authenticated key establishment. Using the established
session key for ongoing integrity can then be thought of as “keeping authentication alive”.

KEY MANAGEMENT. Authentication involving cryptographic protocols naturally re-
lies on cryptographic keys. In practice, the most challenging problem is key management:
establishing shared keys, securing them in transit and in storage, and for public keys, es-
tablishing trust in them and maintaining their integrity and authenticity. Keys used for
securing data at rest (storage) need not be shared with a second party, but it is important to
have some means to recover if such keys are lost, e.g., due to hardware failure (without a
key backup, expect to lose access to all encrypted data, permanently). For keys to be used
in communications, things are better and worse: consequences are less severe if a session

1This may be done, e.g., by exploiting authentication weaknesses in TCP, as explained in Chapter 11.
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key is lost (just establish a new key and retransmit), but shared keys must be arranged
between sender and recipient, e.g., to transmit encrypted data.

REUSING SESSION OR DATA KEYS. For various reasons it is poor cryptographic
hygiene to use permanent (static) session or data keys; to reuse the same such keys with
different parties; and to reuse session or data keys across different devices. Every place
a secret is used adds a possible exposure point. The greater the number of sessions or
devices that use a key, the more attractive a target it becomes. History also shows that
protocols invulnerable to attacks on single instances of key usage may become vulnerable
when keys are reused. Secrets have a tendency to “leak”, i.e., be stolen or become pub-
licly known. Secrets in volatile memory may dump to disk during a system crash, and a
system backup may then store the keys to a cloud server that is supposed to be isolated
but somehow isn’t. (Oops.) Implementation errors result in keys leaking from time to
time. (Oops.) For these and other reasons, it is important to have means to generate and
distribute new keys regularly, efficiently and conveniently.

INITIAL KEYING MATERIAL. To enable authenticated key establishment, a regis-
tration phase is needed to associate or distribute initial keying material (public or secret)
with identified parties. This usually involves out-of-band methods, typically meaning:2

find some way to establish shared secrets, or transfer data with guaranteed authentic-
ity (integrity), either without using cryptography, or using independent cryptographic
mechanisms—and often by non-automated processes or manual means. For example,
we choose a password and “securely” share the password (or PIN) with our bank in per-
son, or the bank sends us a PIN by postal mail, or some existing non-public information is
confirmed by phone. User-registered passwords for web sites are sent over TLS encryp-
tion channels secured by the out-of-band means of the browser vendor having embedded
Certification Authority (CA) public keys into the browser software.

CRYPTO-STRENGTH KEYS, WEAK SECRETS. Ideally, symmetric keys for use in
crypto algorithms are generated by properly seeded cryptographic random number gen-
erators such that the keys are “totally random”—every possible secret key (bitstring) is
equally likely. Then, if the game is to search for a correct key, no strategy is better than an
exhaustive enumeration of the key space, i.e., of all possible values. For keys of t bits, an
attacker with a single guess has a 1 in 2t chance of success, and no strategy better than a
random guess. An attacker enumerating the full key space can on average expect a correct
guess after searching half the space, e.g., 2127 keys for t = 128. Choosing t large enough
makes such attacks infeasible. We call secrets chosen at random, and from a sufficiently
large space, crypto-strength keys or strong secrets. In contrast a key generated determin-
istically by hashing a user-chosen password is a weak secret. Sections 4.5 and 4.6 explore
weak secrets and how protocols can fail when they are used in place of strong secrets.

Exercise (Protecting long-term keys). How do we protect long-term secrets stored in
software? Discuss. Likewise consider short-term secrets (passwords and keys).

‡POINT-TO-POINT MODEL WITH n2 KEY PAIRS. Each pair of parties should use a
unique symmetric key to secure communications. Given n communicating parties, this

2Out-of-band methods are also discussed in Chapter 8.
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Symmetric-key	techniques	for	centralized	key	distribu8on.	In	the	KDC	case,	the	trusted	server	generates	the	session	key	
$K_{AB}$.	In	the	KTC	case,	end-party	A	generates	the	session	key,	but	asks	the	the	server	to	encrypt	it	for	B.	
Both	cases	use	key	transport.	A	and	B	rely	on	the	server	for	session	keys	because	they	don’t	share	a	long-term		
pairwise	keys;	each	end-party	shares	a	long-term	key	with	the	server,	but	not	each	other	party,		
in	order	to	avoid	the	$n^2$	key	distribu8on	complexity	of	a	point-to-point	model.			
The	server	is	thus	the	hub	a	hub-and-spoke	architecture.		

(b)	Key	transla8on	center	(KTC)	(a)	Key	distribu8on	center	(KDC)	

										(1)	Please	
				create	an	
Alice-Bob		
			key	

									(2)	Here’s		
						one	copy	for	
			you,	and	
one	for	Bob	

(3)	Bob		
here	is		your	copy	

Alternate	path		
				to	(3)	for	Bob’s		
								session	key	

									(1)	Please	
										encrypt	
this	session		
		key	for	B	

									(2)	Okay,	
						here	is	a	
			copy	only		
Bob	can	decrypt	

(3)	Bob		
here	is		your	copy	

	Alternate	path		
				to	(2)+(3)		
							for	Bob’s		
											session	key	

	
Server:		KAS	,	KBS		

		

	
Server	

		

	
KAS	,	KBS		

		

	
Server	

		

	
KAS	,	KBS		

		

Alice:		KAS		

Alice		KAS		 Bob	 KBS		
Alice		KAS		

Bob	 KBS		

Figure 4.3: Key transport models for centralized symmetric-key distribution. (a) KDC:
the trusted server generates the session key KAB. (b) KTC: end-party A generates the
session key, but needs the server to encrypt it for B. The server distributes session keys
(as the hub in a hub-and-spoke architecture) because end-parties don’t share long-term
pairwise keys with each other; each shares a long-term key only with the server. KAS is a
long-term secret (key) shared by A (Alice) and S; KBS is likewise for B (Bob) and S.

means (n choose 2) = n(n− 1)/2 ≈ n2 pairs of parties, or n2 overall keys in such a
point-to-point network model. Each party would have n− 1 keys, one for each poten-
tial communicating partner. An organization may need to back up n2 keys, and/or update
them regularly, and securely distribute n2 pairs of keys, e.g., by manual means. The cost
of this grows rapidly with n. This motivates use of a centralized hub-and-spoke model
with a server at the center; this is done (albeit in different ways) both in systems using
symmetric-key techniques (here), and public-key techniques (Chapter 8).

‡CENTRALIZED SYMMETRIC-KEY SERVERS: KDC, KTC. In symmetric-key
technology systems, a centralized architecture reduces the n2 complexity of key distri-
bution by using a trusted server S as follows. Each party A has one unique, long-term
symmetric key that it shares with S, but no long-term keys shared with other parties; as
notation, let KAS denote the A-S such key. The basic idea is as follows, with two options
(Fig. 4.3). One is a key distribution center (KDC).3 Party A makes a request asking S
to set up a pairwise A-B session key. S generates such a key KAB, and sends it to A and
B separately, respectively symmetrically encrypted under KAS and KBS, as {KAB}KAS and
{KAB}KBS ; alternatively, S could send B’s copy to A directly, for A to forward on to B.

A second option is a key translation center (KTC). Here session key KAB is generated
by end-party A, which sends it to S encrypted as {KAB}KAS . S decrypts the session key,
re-encrypts it for B under long-term key KBS as {KAB}KBS , and sends it to B (or alterna-
tively, sends it back to A to forward on to B). In summary, both options reduce the n2

key distribution complexity using symmetric technology and a trusted online centralized
server. A KDC chooses all session keys; a KTC has end-parties choose session keys. The
long-term keys (initial keying material) each party shares with S are set up by out-of-band

3A specific example is the Kerberos system in Section 4.7, which includes important details omitted here.
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techniques, e.g., in-person exchanges, or use of couriers trusted to protect the confiden-
tiality of the keying material.

CHOICE OF SYMMETRIC-KEY OR PUBLIC-KEY METHODS. Either symmetric-
key or public-key approaches (Chapter 8), or their combination, can be used for entity
authentication and authenticated key establishment. As discussed next, in both cases, de-
signing security protocols resistant to creative attacks has proven to be quite challenging,
and provides an example of principle P9 (TIME-TESTED-TOOLS).

4.2 Authentication protocols: concepts and mistakes

Here we consider basic concepts about authentication protocols, along with illustrative
protocol fragments. Discussion of symmetric-key and public-key protocols is combined,
to address issues common to both. Detailed discussion of Diffie-Hellman and related
key establishment protocols is in later sections; the Kerberos protocol, which provides
authenticated key establishment using symmetric keys, is discussed in Section 4.7.

DEMONSTRATING KNOWLEDGE OF SECRET AS PROXY FOR IDENTITY. A basic
idea used to authenticate a remote party B is to (a) associate a secret with B; and then (b)
carry out a communication believed to be with B, accepting a demonstration of knowledge
of that secret (key) as evidence that B is the party involved in the communication. As
discussed (page 94), it is desirable to combine this entity authentication with establishing
a session key for that communication session, distinct from authentication keys. There
are many ways this can go wrong, which makes design of authentication protocols more
complicated than it seems. This is so even without violation of the base assumption that
the authentication secret has not been shared with other parties (or stolen).

If the demonstration of knowledge involves revealing the full secret itself (such as a
password to a server), then it should be over a channel guaranteeing confidentiality, and
such a channel must be first set up to rely on. Rather than send the secret itself, it is
preferred to send (convincing) evidence of knowledge of the secret, informally called a
proof of knowledge. Let’s try the first thing that comes to mind, and see what goes wrong.
While our main interest is authenticated key establishment, our flawed-protocol examples
here will use authentication-only protocols, since they are simpler and allow the lessons
to be learned more easily—and the same conceptual flaws often apply to both.

SIMPLE REPLAY ATTACK. Suppose the secret shared by A and B is S. A wants to
prove knowledge of S. To avoid revealing S directly, A sends H(S), a one-way hash of S,
thinking: this doesn’t reveal S—and B (Bob) can take his own copy of S, the same known
hash function, compute H(S), and compare that to what is received. However, the attacker
simply needs to capture and replay H(S), without ever knowing S itself. This is a simple
replay attack. The flaw is that replays of parts of old protocol runs defeat the protocol.

DICTIONARY ATTACK ON WEAK SECRET. The above attack suggests the following
simple challenge-response protocol. We’ll again give an example of what can go wrong.
Hash function H is as above, but now let’s assume a weak shared secret W . In this case
B will be the claimant. A sends B a fresh, long, random number rA. She expects back the
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hashed concatenation of rA and W , which A will compare to a similarly computed value
using her saved copy of rA, and W :

(1) A→ B : A,rA ... Alice here, prove to me you are Bob using our shared W
(2) A← B : H(rA,W ) ... this hash of W with fresh rA should convince you I’m Bob

What can go wrong? If W is a weak secret (e.g., password), the hash provides an attacker
verifiable text against which an offline guessing attack can be mounted to recover W .
It’s like a password hash-file dictionary attack, without having to steal the file of hashed
passwords. A stronger secret W is apparently needed, but next we see that is not enough.

REFLECTION ATTACK. The following reflection attack succeeds even if the shared
secret above is a crypto-strength key. A and B now share W = S = SAB. Alice sends (1)
above to Bob; Bob is away on vacation but attacker C impersonates B to A as follows.
C starts a new protocol run in parallel, sending A a new message (1)* substituting in
identifier B (claiming to be Bob) but reusing the same rA: C → A : B,rA. Since W is
the secret A and B use to authenticate each other, A’s response H(rA,W ) is exactly the
response that C can play back immediately on A to answer A’s (1) in the first protocol run.

‡Exercise (Mitchell’s reflection attack). Describe a reflection attack similar to the
above, on a symmetric-key mutual authentication protocol (hint: see Attack 2 [34, p.530]).

Example (Relay attack). An automobile executive decides to use the above challenge-
response protocol to conveniently unlock car-door locks as follows. When an owner-
carried keyfob is sufficiently close, the lock issues a challenge to it over a low-power
wireless RF (radio frequency) channel; the legitimate keyfob can respond correctly. How-
ever, a relay attack can defeat the protocol as follows, even if W is replaced by a strong
key. The attack captures the signal at one place, and relays it in real time to another.
So using, e.g., a directional antenna, signal booster and relay, the RF signal between the
keyfob and car door can be manipulated so that they appear to be co-located. Voilà.

Example (IFF relay). Challenge-response authentication dates to 1950-era military
identify-friend-or-foe (IFF) systems. When sent a random challenge, an aircraft keyed
with a (friendly) key sends a correct response by encrypting the challenge with that key. A
potential relay attack is as follows: a hostile aircraft receiving a challenge sends it in turn
to a friendly aircraft, and uses that response. A critical issue is whether the relay round trip
is fast enough to meet the delay allowed by the challenging party. Relay attacks exploit the
transferability of responses. Distance-bounding protocols may be custom-designed with
tight time-delay tolerances (taking into account expected attacker technologies) aiming
to preclude relay attacks beyond prescribed distances. The grandmaster chess problem
(below) is an instance of a related relay attack benefiting from lack of a time bound.

‡Exercise (Interleaving attack). An interleaving attack on an authentication proto-
col is an attempt to impersonate, extract keying material, or otherwise defeat the protocol
goals by using messages or parts from one or more previous protocol runs, or currently on-
going protocol runs (in parallel sessions), possibly including attacker-originated protocol
runs. Explain the technical details of such an attack on the authentication-only protocol
discussed in “Attack 3” [34, p.531] (see further discussion in Diffie [14]).

ATTACKER GOALS. Table 4.1 summarizes common attacks on authentication proto-
cols. The table and caption suggest attack approaches and strategies. Common attacker
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Attack Short description
replay reusing a previously captured message in a later protocol run
reflection replaying a captured message to the originating party
relay forwarding a message in real time from a distinct protocol run
interleaving weaving together messages from distinct concurrent protocols
middle-person exploiting use of a proxy between two end-parties
dictionary using a heuristically prioritized list in a guessing attack
forward search feeding guesses into a one-way function, seeking output matches
pre-capture extracting client OTPs by social engineering, for later use

Table 4.1: Some common attacks on authentication protocols. Attackers follow no rules,
and may read, alter, reuse old, or send entirely new messages; and originate new protocol
runs, recombining old with current or new. A common threat model of prudent protocol
designers is that all bitstrings pass through an attacker-controlled point; forwarding a
bitstring unchanged does not constitute a successful attack. Defenses include use of time-
variant parameters, e.g., to cryptographically bind messages within a protocol run.

end-goals (as opposed to approaches) include: to impersonate another party (with or with-
out gaining access to a session key); to discover long-term keys or session keys, either
passively or by active protocol manipulation; and to mislead a party as to the identity of
the far-end party it is communicating with or sharing a key with.

TIME-VARIANT PARAMETERS. A few attacks in Table 4.1 rely on reusing messages
from previous or ongoing protocol runs. As a defense, time-variant parameters (TVPs)
provide protocol messages and/or session keys uniqueness or timeliness (freshness) prop-
erties, or cryptographically bind messages from a given protocol run to each other, and
thereby distinguish protocol runs. Three basic types of TVPs are as follows (each may
also be referred to as a nonce, or number used only once for a given purpose, with exact
properties required depending on the protocol).

1. random numbers: In challenge-response protocols, these are used to provide fresh-
ness guarantees, to chain protocol messages together, and for conveying evidence that
a far-end party has correctly computed a session key (key-use confirmation, Section
4.4). They also serve as confounders (Section 4.6) to stop certain types of attacks.
They are expected to be unpredictable, never intentionally reused by honest parties,
and sufficiently long that the probability of inadvertent reuse is negligible. If a party
generates a fresh random number, sends it to a communicating partner, and receives
a function of that number in a response, this gives assurance that the response was
generated after the current protocol run began (not from old runs).

2. sequence number: In some protocols, message uniqueness is the requirement, not
unpredictability. A sequence number or monotonic counter may then be used to effi-
ciently rule out message replay. A real-life analogue is a cheque number.

3. timestamps: Timestamps can give timeliness guarantees without the challenge part
of challenge-response, and help enforce constraints in time-bounded protocols. They
require synchronized clocks. An example of use is in Kerberos (Section 4.7).
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RSA ENCRYPTION USED FOR KEY TRANSPORT. Key agreement using public-key
methods is discussed in Section 4.3. Key transport by public-key methods is also common.
As an example using RSA encryption, one party may create a random symmetric key K,
and encrypt it using the intended recipient B’s encryption public key: A→ B : EB(K). The
basic idea is thus simple. Some additional precautions are needed—for example use as
just written is vulnerable to a replay attack (to force reuse of an old key), and gives no
indication of who sent the key.

Example (RSA decryption used for entity authentication of B). Consider:
(1) A→ B : H(rA), A, EB(rA,A) ... EB(rA,A) is a public-key encrypted challenge
(2) A← B : rA ... H(rA) showed knowledge of rA, not rA itself

Here rA is a random number created by A; H is a one-way hash function. Receiving (1),
B decrypts to recover values r∗A, A∗; hashes to get H(r∗A), and cross-checks this equals the
first field received in (1); and checks that A∗ matches the cleartext identifier received. On
receiving (2), A checks that the received value equals that sent in (1). The demonstrated
ability to do something requiring B’s private key (i.e., decryption) is taken as evidence of
communication with B. The association of B with the public key used in (1) is by means
outside of the protocol. If you find all these checks, their motivations, and implications to
be confusing, that is the point: such protocols are confusing and error-prone.

‡Example (HTTP digest authentication). HTTP basic access authentication sends
cleartext username-password pairs to a server, and thus requires pairing with encryption,
e.g., HTTP with TLS as in HTTPS (Chapter 8). In contrast, HTTP digest access au-
thentication uses challenge-response: the client shows knowledge of a password without
directly revealing it. A hash function H (e.g., SHA-256) combines the password and other
parameters. We outline a simplified version. The client fills a server form with hash value

H(h1, Snonce, Cnonce), where h1 = H(username, realm, pswd),
along with the client nonce Cnonce. The server has sent the nonce Snonce, and a string
realm, describing the host (resource) being accessed. This may help the client deter-
mine which credentials to use, and prevents h1 (if stolen from a password hash file) from
being directly used on other realms with the same username-password; servers store h1.
Cnonce prevents an attacker from fully controlling the value over which a client hash is
computed, and also stops pre-computed dictionary attacks. This digest authentication is
cryptographically weak: it is subject to offline guessing due to verifiable text (Section 4.5;
it thus should be used with HTTPS), and uses the deprecated approach of secret data input
(here a password) to an unkeyed hash H, rather than using a dedicated MAC algorithm.

‡Exercise (.htdigest file). To verify HTTP digest authentication, an Apache web
server file .htdigest store lines “user:realm:h1” where h1 = H(user, realm, pswd). A
corresponding htdigest shell utility manages this file. Describe its command-line syntax.

4.3 Establishing shared keys by public agreement (DH)

We now discuss Diffie-Hellman key agreement, ElGamal encryption, and STS, a protocol
that adds mutual authentication to DH. Section 4.8 gives helpful math background.
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DIFFIE-HELLMAN KEY AGREEMENT. Diffie-Hellman key agreement (DH) was in-
vented in 1976. It allows two parties with no prior contact nor any pre-shared keying
material, to establish a shared secret by exchanging numbers over a channel readable by
everyone else. (Read that again; it doesn’t seem possible, but it is.) The system param-
eters are a suitable large prime p and generator g for the multiplicative group of integers
modulo p (Section 4.8); for simplicity, let g and p be fixed and known (published) as a
one-time set-up for all users. Modular exponentiation is used.

(1) A→ B : ga (mod p) ... B selects private b, computes K = (ga)b mod p
(2) A← B : gb (mod p) ... A uses its private a, computes K = (gb)a mod p

The private keys a and b of A, B respectively are chosen as fresh random numbers in the
range [1, p− 2]. An attacker observing the messages ga and gb cannot compute gab the
same way A and B do, since the attacker does not know a or b. Trying to compute a from
ga and known parameters g, p is called the discrete logarithm problem, and turns out to be
a difficult computational problem if p is chosen to have suitable properties. While the full
list is not our main concern here, p must be huge and p− 1 must have at least one very
large prime factor. The core idea is to use discrete exponentiation as a one-way function,
allowing A and B to compute a shared secret K that an eavesdropper cannot.

‡POSTPROCESSING BY KDF. Regarding the DH key K here and similarly with other
algorithms, for security-related technical reasons, in practice K is used as input to a key
derivation function (KDF) to create the session key actually used.

Exercise (Diffie-Hellman toy example). For artificially small parameters, e.g., p = 11
and g = 2, hand-compute (yes, with pencil and paper!) an example Diffie-Hellman key
agreement following the above protocol description. What is your key K shared by A, B?

‡ELGAMAL ENCRYPTION. A variation of DH, called ElGamal encryption, may be
used for key transport. Assume all parties use known g and p as above. Each potential
recipient A selects a private key a as above, computes ga mod p, and advertises this (e.g.,
in a certificate) as its (long-term) public key-agreement key. Any sender B wishing to
encrypt for A a message m (0≤ m≤ p−1, perhaps containing a session key) obtains ga,
selects a fresh random k (1≤ k ≤ p−2), and sends:

B→ A : c = (y,d), where y = gk mod p, and d = m · (ga)k mod p.
To recover m, A computes: t = yp−1−a mod p (note this equals y−a ≡ (gk)−a ≡ g−ak).
Then A recovers: m = d · t mod p (note d · t ≡ m · gak · g−ak). In essence, the DH key
gak is immediately used to transfer a message m by sending the quantity m · gak mod p.
(Note: each value k encrypts a fixed value m differently; this is an instance of randomized
encryption. For technical reasons, it is essential that k is random and not reused.)

TEXTBOOK DH MEETS SMALL-SUBGROUP ATTACKS. DH key agreement as out-
lined above is the “textbook” version. It gives the basic idea. Safe use in practice requires
additional checks as now discussed. If an attacker substitutes the value t = 0 for expo-
nentials ga and gb, this forces the resulting key to 0 (confirm this for yourself); not a great
secret. Things are similarly catastrophic using t = 1. These seem an obvious sort of thing
that would be noticed right away, but computers must be instructed to look. We should
also rule out t = p−1 =−1 mod p, since using that as a base for later exponentiation can
generate only 1 and −1 (we say t =−1 mod p generates a subgroup of order 2). Perhaps
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Middle-person attack on unauthenticated Diffie-Hellman key agreement. The normal DH key computed
by both A and B would be $g^{ab}$. After key agreement, C is able to use $K_A$ and $K_B$ to decrypt and 
re-encrypt messages that $A$ and $B$ send intended for each other. 

How A and B think messages flow

KA = (gb*)a
Alice:  a, ga

Charlie:  a*, ga*, b*, gb*

A, ga

Bob:  b, gb

A, ga* B, gb
B, gb*

KB = (ga*)b

KA = (ga)b*,  KB = (gb)a*

Figure 4.4: Middle-person attack on unauthenticated Diffie-Hellman key agreement. The
normal DH key computed by both A and B would be gab. After key agreement, C can use
KA and KB to decrypt and re-encrypt messages that A and B send intended for each other.

you see the pattern now: an active attacker may replace exponentials with others that gen-
erate small subgroups, forcing K into a small set easily searched. Such small-subgroup
attacks (also called subgroup confinement attacks) are discussed in detail in Section 4.8;
extra protocol checks to rule out these cases are easy, but essential.

BASIC DIFFIE-HELLMAN IS UNAUTHENTICATED. The basic DH protocol above is
secure against passive attack (i.e., eavesdroppers), but protection is needed against active
attackers who may inject or alter messages—such as in the small-subgroup attack just
noted. We now discuss a second active attack, possible because neither A nor B knows
the identity of the party it shares K with, and thus that party might be...an adversary! This
middle-person attack requires a defense other than simple tests on exchanged data.

MIDDLE-PERSON ATTACK. We first describe the classic middle-person attack, also
called man-in-the-middle (MITM), on unauthenticated Diffie-Hellman (Fig. 4.4); we then
discuss it generally. Legitimate parties A and B wish to carry out standard DH as above,
with parameters g, p and private values a, b. A sends ga intended for B. Attacker C
(Charlie) creates private values a∗, b∗, and public exponentials ga∗ , gb∗ . C intercepts and
replaces ga, sending to B instead ga∗ . B replies with gb, which C intercepts, sending instead
gb∗ to A. A computes session key KA = gb∗·a, while B computes KB = ga∗·b; these differ.
Neither Alice nor Bob has actually communicated with the other, but from a protocol
viewpoint, C has carried out one “legitimate” key agreement with A, and another with B,
and can compute both KA and KB. Now any subsequent messages A sends for B (encrypted
under KA), can be decrypted by C, and re-encrypted under KB before forwarding on to B;
analogously for messages encrypted (under KB) by B for A. In the view of both A and B,
all is well—their key agreement seemed fine, and encryption/decryption also works fine.

C may now read all information as it goes by, alter any messages at will before for-
warding, or inject new messages. Independent of DH, middle-person type attacks are
a general threat—e.g., when a browser connects to a web site, if regular HTTP is used
(i.e., unsecured), there is a risk that information flow is proxied through an intermediate
site before proceeding to the final destination. Rich networking functionality and proto-
cols, designed for legitimate purposes including testing and debugging, typically make
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this quite easy. The next chess example is related.

Example (Grandmaster postal chess). A chess novice, Charlie, seeking to dishon-
estly raise his international chess rating, does so by engaging two grandmasters as fol-
lows. Charlie offers to play black (second move) against Alexis, and white against Boris.
Alexis and Boris don’t know there are two games going on, because, naturally, games
are conducted over the Internet (a few are still played by postal mail). Alexis makes the
first move. Charlie plays that as his opening move against Boris (second game). Boris
responds, and Charlie uses that move as his first-move response in the first game. And so
on. In essence, the grandmasters are playing against each other, and Charlie is relaying
moves. They probably draw (the most common outcome among grandmasters), and both
congratulate Charlie on having done so well. Charlie improves his rating as a result of
two draws with top-ranked players; his rating also improves if one grandmaster wins, in
which case Charlie records one win and one loss.

PROVING KNOWLEDGE OF A SECRET DOES NOT RULE OUT MIDDLE-PERSONS.
Note that if you (Alice) believe you are talking to Bob, but Charlie is a middle-person be-
tween you, you can’t detect that by asking your presumed-Bob correspondent to send you
the Bob-to-Alice password—since middle-person Charlie, pretending to be you (Alice),
could just request Bob to send that password to him (impersonating you, Alice), and then
relay it on to you. (Does this sound like a relay attack, above?)

STS PROTOCOL. The Station-to-Station (STS) protocol turns unauthenticated DH
into authenticated DH. Section 4.4 discusses the properties it provides. Whereas EKE
(Section 4.5) relies on passwords for authentication, STS uses digital signatures. If RSA
signatures are used, let A’s signature on message m be SA(m) = (H(m))d mod n, where
dA = (d,n) is A’s signing private key and H is a hash algorithm such as SHA-3 with result
h truncated so that h< n. In STS here, all data other than the two exponentials is encrypted
under the resulting key K. The set-up is as in DH above. {m}K here denotes symmetric
encryption (e.g., AES) of m with key K; and SA(x,y) is the signature (tag) resulting from
the signature operation over the concatenation of x and y.

(1) A→ B : ga ... (mod p) reduction omitted for visual appeal
(2) A← B : gb, {SB(gb,ga),certB}K ... symmetric encryption with shared key K
(3) A→ B : {SA(ga,gb),certA}K ... SA(m) is A’s signature on m

The Diffie-Hellman key K is computed by each party as in steps (1), (2) of basic DH
above. The public-key certificates certA, certB (Chapter 8) are not needed if each party has
an authentic copy of the other’s signature verification public key, in which case they can
be replaced by identifiers; included as here within the encrypted data, they remain hidden
from a network eavesdropper (preserving anonymity, depending on other details).

Studying examples of attacks on flawed protocols as in earlier sections, and flawed
DH protocols also in Section 4.5, helps develop our intuition, and puts us in a position to
systematically consider properties that are necessary or desirable in authentication and key
establishment protocols. The next section discusses properties these protocols provide.
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4.4 Key authentication properties and goals

PROTOCOL GOALS AND PROPERTIES. Key establishment protocols arrange shared
secret keys. Basic requirements on a session key are that it be fresh, sufficiently long,
random, and that parties know whom it is shared with. These define what may be called a
good key. By fresh we mean a value that is new (not reused from a previous session).

FORWARD SECRECY. Preferably, session keys also have forward secrecy. A protocol
provides forward secrecy if disclosure of long-term secret keys does not compromise the
secrecy of session keys from earlier runs. If old session keys cannot be reconstructed
from long-term keys alone, and session keying material itself is ephemeral, i.e., vanishes
at the end of the session,4 then the secrecy of communications in a current session will
remain secret into the future (even if other keys are compromised later). Diffie-Hellman
agreement provides this property if for each protocol run both: (i) secrets (a, b) are fresh,
making resulting secret K fresh; and (ii) after the session, these secrets are securely deleted
(i.e., unrecoverably removed from all memory storage they occupied).

KNOWN-KEY SECURITY. Forward secrecy means compromise of long-term keys
can’t expose previous session keys. A different concern is the impact of compromised
session keys. A key establishment protocol has known-key security if compromised ses-
sion keys do not put at risk future key management—compromised session keys should
not allow later impersonation, or compromise of future session keys. We also never expect
long-term keys to be at risk by compromise of session keys (the basic role of long-term
keys is to play a part in establishing short-term keys, not the opposite).

ENTITY AUTHENTICATION, LIVENESS, KEY-USE CONFIRMATION. If a session
key is for use in a real-time communication, key establishment and entity authentication
should be done jointly in one integrated protocol (cf. Section 4.1). Entity authentication
provides assurance that an identified far-end party is involved in the protocol (actually
participating, active at the present instant); it thus provides a liveness property, not avail-
able in store-and-forward communication like email. A different property, possible in real
time or store-and-forward, is key-use confirmation: one party having explicit evidence that
another has a correct session or data key, via received data demonstrating knowledge of
the correct key. Key-use confirmation may come without a known identity—for example,
as provided by unauthenticated DH followed by key-use on known data.

IMPLICIT AUTHENTICATION, EXPLICIT AUTHENTICATION. If RSA encryption
is used for key transfer from Alice to Bob, then Alice knows that Bob is the only party that
can recover the key—but she does not know whether Bob has actually received it. This is
an example of implicit key authentication—key establishment whereby the scope of who
possibly has key access is narrowed to a specifically identified party, but possession is not
confirmed. If Alice has such implicit key-auth, and then receives key-use confirmation,
this could have originated from no one but Bob—and is thus explicit evidence that Bob has
the key. Implicit key-auth plus key-use confirmation defines explicit key authentication
(Fig. 4.5). Note that all three of these are properties that a protocol delivers to either one

4Preventing later reconstruction is a motivating example for principle P16 (REMNANT-REMOVAL).
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Key-authen*ca*on	terminology	and	proper*es.	Explicit	key	authen*ca*on,	and	implicit	key	authen*ca*on,		
are	both	authen*cated	key	establishment	(with,	and	without,	key-use	confirma*on).	These	are	viewed	as	
proper*es	delivered	to	one	or	both	protocol	par*es.		Key	establishment	protocols	may,	or	may	not,	provide	en*ty	authen*ca*on.	

key-use	
confirma*on	

authen*cated	key	
establishment	

explicit	
key	authen*ca*on	

implicit	
key	authen*ca*on	

Figure 4.5: Key-authentication terminology and properties. Explicit and implicit key
authentication are both authenticated key establishment (with, and without, key-use con-
firmation). Key establishment protocols may or may not provide entity authentication.

or both parties, based on the messages received and the information stored locally.
‡STS AUTHENTICATION PROPERTIES. In STS above, A receives the encrypted

message (2), decrypts, and verifies B’s digital signature on the two exponentials, checking
that these are the properly ordered pair agreeing with that sent in (1). Verification success
provides key-use confirmation to A. (We reason from the viewpoint of A; analogous
reasoning provides these properties to B. The reasoning is informal, but gives a sense
of how properties might be established rigorously.) The signature in (2) is over a fresh
value A just sent in (1); the fresh values actually play dual roles of DH exponentials and
random-number TVPs. B’s signature over a fresh value assures A that B is involved in
real time. Anyone can sign the pair of exponentials sent cleartext in (1) and (2), so the
signature alone doesn’t provide implicit key authentication; but the signature is encrypted
by the fresh session key K, only a party having chosen one of the two DH private keys
can compute K, and we reason that the far-end party knowing K is the same one that
did the signing. In essence, B’s signature on the exponentials now delivers implicit key
authentication. The earlier-reasoned key-use confirmation combined with this provides
explicit key authentication. Overall, STS provides to both parties: key agreement, entity
authentication (not fully reasoned here), and explicit key authentication.

‡Exercise (BAN logic). The Burrows-Abadi-Needham logic of authentication is a
systematic method for manually studying authentication and authenticated key establish-
ment protocols and reasoning about their properties and the goals achieved.
(a) Summarize the main steps involved in a BAN logic proof (hint: [12]).
(b) What did BAN analysis of the X.509 authentication protocol find? ([17]; [34, p.510])
(c) Summarize the ideas used to add reasoning about public-key agreement to BAN [44].
(d) Summarize the variety of beliefs that parties in authenticated key establishment proto-
col may have about keys (hint: [9, Ch.2], and for background [34, Ch.12]).

4.5 Password-authenticated key exchange: EKE and SPEKE

Password-authenticated key exchange (PAKE) protocols use passwords to establish au-
thenticated session keys (Fig. 4.6). Since passwords are often weak secrets (below, and
p.95), these protocols must be carefully designed to resist offline password-guessing at-
tacks. We discuss EKE (encrypted key exchange), building up to DH-EKE through several
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PAKE:	password-authen4cated	key	exchange.		
If	the	password	is	user-entered	when	the	protocol	starts,	and	removed	from	memory	aBer	the	protocol,	
then	there	is	no	client-side	requirement	for	secure	storage	of	long-term	secrets.		

Session	key	establishment	with	mutual	authen4ca4on	
based	on	weak	password	w	(only	par4es	knowing	w	can	compute	K)	

password	not	explicitly	sent;	
no	verifiable	text	

in	exchanged	messages			
start	with	shared	w;	

end	with	fresh	session	key	K	

client		 server	

start	with	shared	w;	
end	with	fresh	session	key	K	

Figure 4.6: Password-authenticated key exchange (PAKE). If the password is user-
entered when the protocol starts, and removed from memory after the protocol, then there
is no client-side requirement for secure storage of long-term secrets.

variants, and then briefly an alternative called SPEKE. The objective is not only to present
the final protocols, but to gain intuition along the way, including about types of attacks to
beware of—and to deliver the message that protocol design is tricky even for experts.5

PAKE GOALS AND MOTIVATION. Password-based protocols often convert user-
chosen passwords into symmetric keys using a key derivation function (KDF, Section
3.2). As noted there, unless care is taken, clever attacks may discover passwords because:

1. protocol data visible to an attacker may allow testing individual password guesses (if
it can serve as verifiable text analogous to hashes in a stolen password file); and

2. user-chosen passwords are weak secrets—a large proportion fall into small and pre-
dictable subsets of the full password space (recall Figure 3.2), or sometimes the full
space itself is so small that its entirety can be searched; thus a correct guess is often
expected within the number of guesses that an attacker is able to execute.

EKE and other PAKE protocols are key establishment protocols that use passwords as
the basis for mutual authentication of established keys, without explicitly revealing the
password to the far end, and aim to resist offline guessing attacks even if the passwords
are user-chosen (weak). The protocol design must thus assure, among other things, that
the protocol data sent “on the wire” contains no verifiable text as noted.

NAIVE KEY MANAGEMENT EXAMPLE. To build towards an understanding of EKE,
we first see how simpler protocols fail. Let’s explore how an attack may succeed. Let
w be a weak password, and W = f (w) be a symmetric key (e.g., a 128-bit key for AES
encryption, derived from w by SHA-3 or any suitable key derivation function). Alice and
Bob share (secret, long-term) key W ; as earlier, “w” and “W” are mnemonic reminders of
a weak secret from a user-chosen password. Now for this communication session, Alice
generates a random r-bit (symmetric) session key K, encrypts it with W , and sends:

(1) A→ B : C1 = {K}W ... i.e., C1 is the symmetric encryption of K under key W
(2) A← B : C2 = {T}K ... where text T is a secret formula to be protected

On receiving (1), Bob decrypts with W ; they then share session key K to encrypt T . But
an attacker could intercept and record C1,C2, then see whether the following “attack”
succeeds, where {m}K−1 denotes decryption of m with symmetric key K:

5This is a specific instance of principle P9 (TIME-TESTED-TOOLS).
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1. Do a trial decryption of C1 = {K}W with candidate key W ∗.
Call the resulting candidate session key K∗ = {{K}W}W ∗−1

2. Use K∗ to do a trial decryption of C2, calling the result T ∗.
3. Examine T ∗ for recognizable redundancy (e.g., English text, ASCII coded).6

If recognizable, conclude that the candidate key (W ∗) is correct (i.e., the real W ).
VERIFIABLE TEXT. In the above protocol, it is the verifiable text that puts the long-

term weak secret W at risk. The attack is passive (data is observed but no message flows
are altered), and offline as discussed below. Will the attack succeed in recovering w?
• Case 1 (w is a long and random string, e.g., 80 to 128 bits): unlikely.
• Case 2 (w is a user-chosen password, often guessable in under 220 or 230 tries): likely.
In practice, “dictionaries” of 100,000 words (and variations) are wildly successful.

PASSWORD-GUESSING STRATEGY TERMINOLOGY. The term dictionary attack
(see also Chapter 3) refers to methods that step through a list of password candidates
w∗ ordered in decreasing probability (expectation) of success. Here our main interest
is offline such methods (with no per-guess interaction with a legitimate verifier—thus
incorrect guesses go undetected). For a short list, all entries can be tried within a short
time; for longer lists, an attacker may hope for an “early success” and quit at a fixed
time limit, to move on to different target accounts. The lists may be explicitly stored or
dynamically enumerated. A method may use full pre-computed tables (e.g., of password
hashes per Chapter 3), partial tables (as in rainbow tables with time-memory tradeoff), or
none at all. Online guessing (dictionary) attacks, the other main approach, require per-
guess interaction with a legitimate server. The terms dictionary attack, guessing attack,
brute-force guessing and exhaustive attack are often ambiguous, unless explained further.

GENERIC-NOTATION EKE. With the above motivation, consider now the following
conceptual protocol. A (Alice) and B (Bob) again pre-share a symmetric key W derived
from a password w. {x}W will mean symmetric encryption of x under key W , and EeA(x)
denotes asymmetric (think: RSA) encryption of x using A’s public key eA.

(1) A→ B : A, {eA}W ... identifier A signals whose shared secret to use
(2) A← B : {EeA(K)}W ... for convenience, define C = EeA(K)
(3) A→ B : {T}K ... now use the session key K to encrypt data T

Here, Alice generates a fresh (public, private) key pair (eA,dA) then sends (1). Bob de-
crypts {eA}W using W , recovering eA; generates random symmetric key K; asymmetri-
cally encrypts K using EeA , super-encrypts with W , then sends (2). Alice decrypts (2)
using first W then dA, to recover K. Now both Alice and Bob know K, a new session key.

ANALYSIS. What could an eavesdropper deduce on observing {eA}W , {EeA(K)}W ,
{T}K? To test a candidate password guess W ∗, he could use W ∗ to decrypt {eA}W , pro-
ducing candidate public key eA

∗. Could he then easily verify whether eA
∗ is the public key

in use? Let’s see. Using the same guess W ∗, he can trial-decrypt {EeA(K)}W to get candi-
date C∗ = EeA(K)∗; but this appears to be of little help unless he can easily test whether
candidate C∗ is the correct C. Since K is also unknown, it seems the attack fails, as he
must at the same time (for each W ∗) guess candidates K∗ to find K such that {{T}K}K∗−1

6ASCII’s 7-bit code, commonly stored in 8-bits with top bit 0, enables an ideal test in such an attack.
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is recognizable as a correct result. Alternatively: trying to deduce K from candidate
C∗ = EeA(K)∗ is equivalent to defeating the public-key scheme (which we assume is not
possible).

So if eA is truly random, guesses for W ∗ can’t be confirmed.7 Apparently no “check-
word” is available to test success. The attacker faces simultaneous unknowns W , K; even
if the password is from a small predictable space, neither spaces of K nor eA are small.
(Aside: an attacker could always get “lucky” with a single online guess, which would be
verified by protocol success—but EKE aims to stop offline guessing of weak passwords.)

TIGHTENING AUTHENTICATION. We now add messages to provide entity authen-
tication including key-use confirmation of session key K. The time-variant parameters, as
part of this, chain protocol messages, addressing common attacks noted in Section 4.2.

(1) A→ B : A,{eA}W
(2) A← B : {EeA(K)}W ,{rB}K ... rB is B’s random number for challenge-response
(3) A→ B : {rA,rB}K ... B recovers rA and rB, aborts if mismatches earlier rB

(4) A← B : {rA}K ... A checks rA matches; if yes, accepts K as session key
RSA-EKE (FALSE START). The above conceptual version is appealing. Can we

instantiate it using RSA (Chapter 2) as the public-key system? This turns out to be tricky.
From (1), a guessed password W ∗ allows deduction of a corresponding candidate e∗A; we
must ensure that no verifiable text allows an attacker to easily test e∗A for “validity”. If
the RSA public key is eA = (e,n), how should these be encrypted in (1) so that such
an e∗A recovered using an incorrect password guess appears no different than a random
bitstring? This is problematic due to both e and n. Regarding e: valid RSA exponents
are odd, but half of trial decryptions e∗A will yield an even e∗. An attacker could eliminate
half the candidates from a dictionary, and do likewise for each protocol run if fresh RSA
keys are used in each. We call data such as e a partitioning text (explained below). This
particular case can be addressed by randomly (for 50% of protocol runs) adding 1 to the
RSA exponent (the receiving party simply drops the bit if present, knowing the process).

Regarding n: an attacker can attempt to factor a recovered n∗. A genuine RSA modu-
lus n has the uncommon property of being a product of two large primes; most numbers
of similar size have many small prime factors that well-known methods find quickly—
signaling an invalid RSA modulus, thus an invalid guess W ∗. This allows a similar parti-
tioning attack. Rather than pursue these and other RSA-EKE implementation challenges
further, we instead move on to the more promising DH-EKE—having learned the lesson
that in security implementations, there is almost always a devil in the details.

PARTITION ATTACKS. Before moving on, we explain the general idea of a partition
attack. Suppose a particular data field (partitioning text) in a protocol message leaks
information allowing a partition of a candidate-password list (dictionary) into two disjoint
sets: those still possible, and those eliminated. If the partition is roughly equal size, a
dictionary of 2u entries is cut to 2u−1. If each protocol run randomizes data such that
dictionary candidates are randomly redistributed, then observing a second protocol run

7You are being led into a trap; a public key randomly and properly selected will not necessarily be the
same as a random string (but read on).
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reduces the dictionary again by half to 2u−2, and so on logarithmically. How does this
compare to verifiable text, such as a password hash? If searching for a weak secret using
a dictionary list D, one verifiable text may allow an offline search through D, finding
the weak secret if it is among the entries in D. In contrast, a partition attack collects
test data from numerous protocol runs, and each narrows a dictionary by some fraction;
each involves the same weak secret, randomized differently, to the attacker’s benefit. This
attack strategy re-appears regularly in crypto-security. We say that each protocol run leaks
information about the secret being sought.

DH-EKE. As in basic Diffie-Hellman (Section 4.3), we need parameters g, p. A first
question is whether it is safe to transmit {p}W in a protocol message. Answer: no. Testing
a candidate p∗ for primality is easy in practice, even for very large p, so transmitting {p}W
would introduce verifiable text against which to test candidate guesses for W . So assume
a fixed and known DH prime p and generator g for the multiplicative group of integers
mod p.8 To add authentication to basic DH (being unauthenticated, it is vulnerable to
middle-person attacks), the exponentials are encrypted with pre-shared key W :

(1) A→ B : A,{ga}W ... the key agreement public key ga is short for ga (mod p)
(2) A← B : {gb}W

Each party uses W to recover regular DH exponentials, before executing DH key agree-
ment. Note that DH private keys a and b (unlike an RSA modulus) have no predictable
form, being simply non-zero random numbers of sufficient length. The idea is that a
middle-person attack is no longer possible because:

(i) the attacker, not knowing W , cannot recover the DH exponentials; and
(ii) since a is random, we hope (see Note 1 below) that ga is also random and leaks no

information to guesses W ∗ for W . We now have a full illustrative version of DH-EKE:
(1) A→ B : A,{ga}W ... symmetrically encrypt ga under key W
(2) A← B : {gb}W ,{rB}K ... rB is B’s random challenge
(3) A→ B : {rA,rB}K ... B checks that rB matches earlier
(4) A← B : {rA}K ... A checks that rA matches earlier

Distinct from the conceptual EKE (above), here each party computes fresh session key
K from the result of DH key agreement, rather than B generating and transmitting it to
A. This provides forward secrecy (Section 4.4). The protocol can be viewed in practical
terms as using passwords to encrypt DH exponentials, or abstractly as using a shared weak
secret to symmetrically encrypt ephemeral public keys that are essentially random strings.

NOTE 1. The above hope is false. If modulus p has bitlength n, then valid exponen-
tials x (and y) will satisfy x < p < 2n; any candidate W ∗ that results in a trial-decrypted x
(or y) in the range p≤ x < 2n is verifiably wrong. Thus each observation of a W -encrypted
exponential partitions the list of dictionary candidates into two disjoint sets, one of which
can be discarded. The fraction of remaining candidates that remain contenders, i.e., the
fraction yielding a result less than p, is p/2n < 1; thus if t protocol runs are observed,
each yielding two exponentials to test on, the fraction of a dictionary that remains eligible
is (p/2n)2t . This offline attack is ameliorated by choosing p as close to 2n as practical; an

8Here p = Rq+1 for a suitably large prime q, and thus p is PH-safe per Section 4.8.
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alternate amelioration is also suggested in the original EKE paper (Section 4.9).
SPEKE. An elegant alternative, SPEKE (simple password exponential key exchange)

addresses the same problem as DH-EKE, but combines DH exponentials with passwords
without using symmetric encryption in the key agreement itself. The final steps for key-
use confirmation can be done as in DH-EKE, i.e., the symmetric encryptions in steps
(2)-(4) above. For notation here, let w denote the weak secret (password).9

(1) A→ B : A,(w(p−1)/q)a ... this is just f (w)a if we write f (w) = w(p−1)/q

(2) A← B : (w(p−1)/q)b ... and f (w)b

Again exponentiation is mod p (for p = Rq+1, q a large prime). As before, A and B each
raise the received value to the power of their own private value; now K = wab(p−1)/q.

Notes: If R = 2, then (p− 1)/q = 2 and the exponentials are w2a and w2b; such a p
is called a safe prime (Section 4.8). We can assume the base w(p−1)/q has order q (which
as noted, is large).10 The order of the base bounds the number of resulting values, and
small-order bases must be avoided as with basic DH—recall the small-subgroup attack.
Because an active attacker might manipulate the exchanged exponentials to carry out such
an attack, before proceeding to use key K, A and B must implement tests as follows.

• Case: p is a safe prime. Check that: K 6= 0, 1, or p−1 (mod p).

• Otherwise: do the above check, plus confirm that: xq = 1 (mod p). This confirms x is
in the group Gq. Here x denotes the received exponential in (1), (2) respectively.

‡Example (Flawed SPEKE). One of SPEKE’s two originally proposed versions had
a serious flaw. We explain it here, using a key-use confirmation design yielding a minimal
three-message protocol originally proposed for EKE, but adopted by SPEKE.

(1) A→ B : A,gwa ... this is f (w)a for f (w) = gw; g is chosen to have order q
(2) A← B : gwb,{gwb}K ... B’s exponential doubles as a random number
(3) A→ B : {H(gwb)}K ... key-use confirmation in (2) and (3)

This version of SPEKE exchanges f (w)a and f (w)b where f (w) = gw and g = gq gener-
ates a subgroup of order q (found per Section 4.8). A sends gwa, resulting in K = gwab.
For a weak secret w, this version falls to a dictionary attack after an attacker C (Charlie)
first initiates a single (failed) protocol run, as follows. After A sends gwa, C responds
with gx (not gwb) for a random x—he need not follow the protocol! A will compute
K = (gx)a = gxa. C receives gwa, and knowing x, can compute (gwa)x; he can also make
offline guesses of w∗, and knowing q, computes the (mod q) inverse of w∗ by solving
z ·w∗ ≡ 1 (mod q) for z = (w∗)−1. Now for each guess w∗ he computes K∗ = gwax(w∗−1);
the key point is that for a correct guess w∗, K∗ will equal gax, which is A’s version of
K. Using A’s key-use confirmation in (3), C independently computes that value using K∗

(possible because C also knows the value K is being confirmed on), and a match confirms
w = w∗; otherwise C moves on to test the next guess for w∗, until success. This attack
exploits two errors: failure to anticipate combining a dictionary attack with a one-session
active attack, and a key-use confirmation design that provides verifying text.

9When w is first processed by a hash function, we use W = H(w); a different SPEKE variation does so.
10By F7 (Section 4.8), the order is q or 1 (exponentiating by R = (p−1)/q forces it into the order-q group).

For it to be 1, q must divide R; this can be avoided by choice of p, and is ruled out by later checking: K 6= 1.
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‡Exercise (SRP, OKE, J-PAKE). Summarize the technical details of the following
password-authenticated key exchange alternatives to EKE and SPEKE.
(a) SRP, the Secure Remote Password protocol. (Hint: [49, 48].)
(b) OKE, the Open Key Exchange. (Hint: [31], but also [32] or [9, Chapter 7].)
(c) J-PAKE, called PAKE by Juggling. (Hint: [22, 23, 21].)

4.6 ‡Weak secrets and forward search in authentication

A weak secret, derived from a user-chosen password or short numeric PIN, can be found
by an attacker in a feasible amount of time given appropriate circumstances—meaning,
such circumstances must be precluded by design, if protocols are to be used with weak
secrets in place of strong keys. EKE, SPEKE, and some other authenticated key establish-
ment protocols do attempt to accommodate weak secrets—thus their protocol designs aim
to preclude dictionary-type attacks.11 Here we consider some further protocol examples
and related forward search attacks that must be addressed when using public-key systems
with weak secrets. A first example shows that verifiable text need not originate from a
password hash file or a key agreement protocol.

Example (Gong’s SunOS-4.0 public-key system example). User A has encryption
public-private key pair (eA,dA) with the private key stored AES-encrypted under a key
W = f (w) derived from password w, denoted {dA}W . On login, the system decrypts us-
ing W to recover dA. Its correctness is verified by testing that the recovered dA (call it
d∗A) is indeed the inverse of eA as follows: choose a random x, compute EeA(x), and de-
crypt with d∗A to see whether x returns. An attacker can similarly test (offline) password
guesses W ∗ by computing dA

∗ = {{dA}W}W ∗−1 , choosing any value x, and testing whether
x = Dd∗A(EeA(x)). If yes, then very likely W ∗ =W and dA

∗ = dA; false positives are elimi-
nated by trying other x. Thus despite dA being a strong cryptographic key, the weak secret
makes it vulnerable to discovery. The stored values eA and {dA}W serve as verifiable text.

RECOGNIZABLE FORMATS. The general problem is that testing is possible as a
result of recognizable formats. Examples are: a timestamp field for which the recovered
value is a plausible timestamp; a field having a verifiable structure (e.g., a URL with dots
and a known top-level domain/TLD); a checksum used for message integrity; a known
text field (e.g., fixed identifier, server name, service name). For example, with K denoting
a symmetric key, suppose an attacker observes {(m,n)}K and that m is known plaintext.
Guess a K∗ for K, compute {{m,n}K}K∗−1 and test whether m is found therein. Yes means
K∗ is probably correct; no means definitely wrong.

FORWARD-SEARCH ATTACKS. By definition, public-key systems have publicly
available encryption keys. This raises a vulnerability: directly encrypting a weak secret
with a public-key system produces verifiable text. Let EeA(x) denote public-key encryp-
tion of x, a value from a small space S (small number of elements). An attacker can carry
out the following forward search attack. Compute EeA(x) for every element x in S. Any
value C = EeA(w) later produced, e.g., in a protocol, can be compared to such values. This

11Failure to do so would violate principle P12 (SUFFICIENT-WORK-FACTOR).
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attack is likewise possible if by guessing values w∗, an attacker can derive from proto-
col data, values serving as verifiable text to compare to forward-search values. Although
EeA(x) encrypts x, the public-key property means it is publicly computable like a one-way
hash; thus the similarity to dictionary attacks on protocol data or password hashes.

A standard defense is to insert a field for a sufficiently long random number r, and send
EeA(r,x). The intended recipient recovers r and x (simply throwing away the r, which has
served its purpose). A value r = c used in this manner is sometimes called a confounder in
other contexts, as it confuses or precludes attacks. Note the analogy to password salting.
More generally, attacks against weak secrets are often stopped by “randomizing” protocol
data related to weak secrets, in the sense of removing redundancies, expected values, and
recognizable formats or structural properties that may otherwise be exploited.

Example (Weak secrets in challenge-response authentication). Consider this protocol
to prove knowledge of a weak secret W ; r is a random number; f is a known function.

(1) A→ B : {r}W ... unilateral authentication of B to A
(2) A← B : { f (r)}W ... use simple f (r) 6= r to prevent reflection attack

Neither (1) nor (2) contains verifiable text alone as r and f (r) are random, but jointly they
can be attacked: guess W ∗ for W , decrypt (1) to recover r∗, compute f (r∗), test equality
with (2) decrypted using W ∗. The attack is stopped by using two unrelated keys:

(1′) A→ B : {r}K1

(2′) A← B : { f (r)}K2

In this case, for fixed r, for any guessed K1, we expect a K2 exists such that {r}K1 =
{ f (r)}K2 so an attacker cannot easily confirm correct guesses. Rather than ask users to
remember two distinct passwords (yielding K1 = W1,K2 = W ), consider these changes.
Choose a public-private key pair (for B). The public key replaces the functionality of
K1; the private key stays on B’s computer. A sufficiently large random number cA is also
used as a confounder to preclude a forward search attack. To illustrate confounders, we
artificially constrain f to the trivially-inverted function f (r) = r+1 (although our present
problem is more easily solved by a one-way hash function12):

(1) A→ B : EK1(cA,r) ... K1 is the encryption public key of user B; A is the server
(2) A← B : { f (r)}W ... B proves knowledge of password-derived key W = K2

This stops the guessing attack, since to recover r from (1) for a test, an attacker would
need to guess either (i) W as well as the private key related to K1; or (ii) both W and cA.

Exercise (Protocol analysis). These questions relate to the example above.
(a) List the precise steps in attack alternatives (i) and (ii), and with concrete examples of
plausible search space sizes, confirm that the attacks take more than a feasible time.
(b) Explain, specifying precise attack steps, how an active attacker can still learn W .
Hint: consider an attacker A′ sending the first message to B, and note that A′ knows r.

Example (Forward search: authentication-only protocol). As a final example of dis-
rupting forward search, this unilateral authentication protocol proves that user A knows a
weak secret WA = H(w) computed on user-entry of A’s numeric PIN w. A’s device con-
tains no keying material other than the bank’s public key eS.

12This is noted and discussed further by Gong [19].
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(1) A← S : rS ... random challenge from server S
(2) A→ S : EeS{A,cA,{rS}WA} ... confounder cA; encryption public key eS of S

Receiving (2), S decrypts, uses identifier A to retrieve the shared secret WA, and uses that to
recover rS to compare to the challenge in (1). If cA is removed, an eavesdropper knowing
A can compute EeS{A,{rS}W ∗A } for guesses W ∗A , and compare to the value seen in (2).

4.7 ‡Single sign-on (SSO) and federated identity systems

A single sign-on (SSO) system is an architecture allowing a user to authenticate once at
the beginning of a session or shift, and then without re-authenticating separately for each,
access a set of services or resources from service providers (SPs, also called relying par-
ties, RPs). Thus users manage only one credential, e.g., a master userid-password pair or
hardware token. The process involves third parties called identity providers (IdPs), which
access credentials or create authenticators (data tokens) from the initial authentication for
later identity representations. Administratively, SSO systems allow centralized account
provisioning, management, and retraction of access privileges on employee termination.
A downside is concentrated risk:13 a single attack compromises many resources, and loss
of a master credential denies access to many resources. In a single credential system, users
similarly have one master credential, but must explicitly log in to each service with it.

TYPES OF SSO SYSTEMS. Different types of SSO systems are classified based on
design architecture and application scenarios. We note three popular categories.

1. Credential manager (CM) systems including password managers (Chapter 3). These
manage, on behalf of users, SP-specific credentials (passwords or crypto keys), usu-
ally encrypted under a key derived from the master credential (e.g., user password,
or hardware token storing a crypto key). Individuals wishing to simplify their own
password management may resort to password managers.

2. Enterprise SSO systems. These allow users to access resources controlled by a single
administrative domain, and typically serve a closed community such as a corporate or
government organization aiming to simplify life for employees. The Kerberos system
(below) has long been popular in universities and Windows-based systems.

3. Federated identity (FI) systems. These support authentication across distinct admin-
istrative domains, and often serve non-enterprise or open communities, including web
sites (SPs) seeking to lower registration barriers for new users. These are also called
web SSO systems when user agents are browsers, although enterprise SSO systems
also commonly use browser-based interfaces.

FEDERATED IDENTITY SYSTEMS. The design of FI systems specifies protocols for
user identity registration, user-to-IdP authentication, IdP-to-SP authentication, and who
controls the name space of user identities. An additional party, the federation operator,
sets administrative and security policies; how these are enforced depends on the parties

13This is analogous to risks, and related principles, associated with password managers in Chapter 3.
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involved. (In enterprise SSO systems, internal information technology staff and manage-
ment are responsible.) Each user registers with an IdP, and on later requesting a service
from an RP/SP, the user (browser) is redirected to authenticate to their IdP, and upon suc-
cessful authentication, an IdP-created authentication token is conveyed to the RP (again
by browser redirects). Thus IdPs must be recognized by (have security relationships with)
the RPs their users wish to interact with, often in multiple administrative domains. User-
to-IdP authentication may be by the user authenticating to a remote IdP over the web by
suitable user authentication means, or to a local IdP hosted on their personal device.

KERBEROS PROTOCOL (PASSWORD-BASED VERSION). The simplified Kerberos
protocol below provides mutual entity authentication and authenticated key establishment
between a client A and a server B offering a service. It uses symmetric-key transport. A
trusted KDC T arranges key management. The name associates A, B and T with the three
heads of the dog Kerberos in Greek mythology. A and B share no secrets a priori, but from
a registration phase each shares with T a symmetric key, denoted kAT and kBT , typically
password-derived. (Protocol security then relies in part on the properties of passwords.)

A gets from T a ticket of information encrypted for B including an A-B session key kS,
A’s identity, and a lifetime L (an end time constraining the ticket’s validity); copies of kS

and L are also separately encrypted for A. The ticket and additional authenticator authA

sent by A in (3), if they verify correctly, authenticate A to B:

(1) A→ T : A,B,nA ... nA is a nonce from A
(2) A← T : tickB,{kS,nA,L,B}kAT ... tickB = {kS,A,L}kBT is for forwarding to B
(3) A→ B: tickB,authA ... authA = {A, tA,kA}kS , tA is time from A’s clock
(4) A← B: {tA,kB}kS ... A checks that tA matches the value from (3)

On receiving (2), A recovers parameters kS,nA,L and B (cross-checking that the identifiers
B in (1) and (2) match, that the nonces match, and saving L for reference). The authA

received by B in (3) reveals whether A knows kS; B recovers parameters from tickB in-
cluding kS, uses it to recover the contents of authA, and checks that the identifiers match,
that tA is valid per B’s timestamp policy, and that B’s local time is within lifetime L. Mes-
sage (4) allows entity authentication of B to A, as a matching tA indicates that B knows kS.
The secondary keys kA and kB created by A and B are available for other purposes (e.g., a
one-way function f (kA,kB) may serve as a new session key independent of kS). The use
of timestamps creates the requirement of (secure) synchronized timeclocks.

TICKET GRANTING TICKETS. The above version gives the basic idea of Kerberos.
In some Kerberos-based authentication services, before getting service tickets such as
tickB, an end-user A must get an initial (time-limited) ticket granting ticket (TGT) to-
ken upon logging into a primary service account by password authentication or stronger
means. The TGT token is used to obtain service tickets from T replacing (1)-(2) above,
by a protocol not detailed here. Such a system is more recognizable as an enterprise SSO
system, but even in the version above, T facilitates A getting service from B multiple times
(within lifetime L), i.e., multiple iterations of (3)-(4) after (1)-(2) once.
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4.8 ‡Cyclic groups and subgroup attacks on Diffie-Hellman

‡This section may be skipped by those who did not enjoy mathematics in primary school.
The mathematical background herein is helpful for understanding the computations in-
volved in, and security of, Diffie-Hellman key agreement (Section 4.3).

MULTIPLICATIVE GROUPS AND GENERATORS. If p is a prime number, then the
non-zero integers modulo p, i.e., the integers 1 to p− 1, form a multiplicative group.
The idea of a group is that combining two group elements using the group operation
yields another group element (i.e., another integer in [1, p− 1]); the group operation is
multiplication followed by taking the remainder after dividing by p (the modulus), which
is what “mod p” means. If p is prime, a generator g always exists such that gi (mod p) for
i= 1,2, ... generates all group elements, i.e., g1, g2, g3, ..., gp−1 mod p is some re-ordering
of the integers 1 to p−1. Note gp = g1 ·gp−1, and gp−1 = 1 and the cycle begins again.
Mathematicians use the fancy name Z∗p for this algebraic structure; Z denotes integers,
p for prime, and asterisk for multiplicative group (0 removed). Don’t worry—damage to
young minds from exposure to this notation is likely short-term only.

Example (Multiplicative group of integers mod 11). For p= 11 and g= 2, the integers
1 to 10 = p− 1 form a (cyclic) multiplicative group Z∗11. Computing gi (mod p), i ≥ 1
yields 2,4,8,5,10,9,7,3,6,1. Thus g = 2 generates all 10 elements and is a generator.

ORDER OF MULTIPLICATIVE GROUP, AND SUBGROUPS. An alternate view of
Z∗p is as a cyclic group Gn; G is for group, n is the number of elements. Since Z∗p is a
multiplicative group with p−1 elements, we can view it abstractly as Gp−1. For p prime,
Gp−1 is cyclic. We define the order of each element b to be the number of distinct elements
its powers bi generate; or equivalently, the smallest positive j such that b j ≡ 1 (mod p). A
generator generates all elements in the group. Thus a generator for Gt has order t. Every
element of a cyclic group generates a cyclic subgroup—either the full group, or a smaller
one. An example is given further below.

GENERATORS, ORDERS OF ELEMENTS, OTHER FACTS. We collect several further
facts for use related to Diffie-Hellman security and subgroup attacks (Section 4.3). These
can be formally established fairly easily; by playing around with small examples such as
Z∗11 with your morning coffee, you can confirm most of them—but our aim is to use them
as tools, not to prove them. Below, φ(n) is the number of integers from 1 to n whose
greatest common divisor with n is 1, e.g., φ(9) = 6 as i = 1,2,4,5,7,8 have gcd(i,9) = 1.

These facts for cyclic groups Gn apply to the cyclic group Z∗p = Gp−1. Commonly,
p = Rq+1 is the notation used for mod p Diffie-Hellman, yielding a subgroup Gq having
q elements (q is a prime here). You may find it helpful to take your pencil and paper, and
work through each of these facts F1–F7 using the example of Table 4.2 (page 116).

F1: In a cyclic group Gn, exponents can always be reduced modulo n. For p = 11 and
generator g = 2: 210 (mod 11) ≡ 20 (mod 11) ≡ 1. Exponents reduce mod 10.

F2: i) All subgroups of a cyclic group are also cyclic.
ii) The order of a subgroup will divide the order of the group.
iii) The order of an element will divide the order of the group.
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For Gp−1: the order of any element is either d = 1 or some d that divides p−1.
For Gq: all elements thus have order either 1 or q (since q is prime).

F3: Gn has exactly one subgroup of order d for each positive divisor d of its order n; and
φ(d) elements of order d; and therefore φ(n) generators.

F4: If g generates Gn, then b = gi is also a generator if and only if gcd(i,n) = 1.

F5: b is a generator of Gn if and only if, for each prime divisor pi of n: bn/pi 6= 1

F6: For generator g of Gn, and any divisor d of n: h = gn/d yields an order-d element.

F7: Without knowing a generator for a cyclic group Gn, for any prime divisor p1 of n, an
element b of order p1 can be obtained as follows:

Select a random element h and compute b = hn/p1 ; continue until b 6= 1.
(Obviously a b = 1 does not have prime order; and for b 6= 1, it lies in the unique
subgroup of order p1 and must itself be a generator, from F2 and F3.)

Exercise (Another Z∗11 generator). For Z∗11 as above, set g = 3. Does the sequence
g,g2,g3... (all reduced mod 11) generate the full set, or just half? Find a generator other
than g = 2, and list the sequence of elements it generates.

Example (Subgroups of Z∗11). Table 4.2 explores the subgroups of Z∗11, or G10. We
have seen that one generator for the full group is g = 2. The element h = 3 generates the
order-5 cyclic subgroup G5. The elements of G5 can be represented as powers of h:

h1 = 3, h2 = 9, h3 = 5, h4 = 4, h5 = 1 = h0

To view G5 in terms of the generator g = 2 of the full group, since h = 3 = g8, this same
ordered list (3,9,5,4,1) represented in the form (g8)i is:

(g8)1 = 3, (g8)2 = 9, (g8)3 = 5, (g8)4 = 4, (g8)5 = 1
Since for p = 11, exponents can be reduced mod 10, this is the same as: g8,g6,g4,g2,g0.
The divisors of 10 are 1, 2, 5 and 10; these are thus (by F2 above) the only possible orders

Order Subgroup Generators
1 {1} 1
2 {1, 10} 10
5 {1, 3, 4, 5, 9} 3, 4, 5, 9

10 {1, 2, 3, ..., 10 } 2, 6, 7, 8

Structure	of	subgroups	of	a	safe	prime,	p	=	11	=	2(5)	+	1.		

G10		

G5		

G2		

G1=	{1}		
{p-1}	=		
{10}	

	{3,	4,	5,	9}	
all	generate	G5	

	{2,	6,	7,	8}	
all	generate	G10		

i 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
b = gi 2 4 8 5 10 9 7 3 6 1 2 4 · · ·

order of b 10 5 10 5 2 5 10 5 10 1 10 5 · · ·
Table 4.2: The structure of subgroups of Z∗11 = G10. G10 has four distinct subgroups. The
lower table shows how elements can be represented as powers of the generator g = 2, and
the orders of these elements. Note that p = 11 is a safe prime (p−1 = 2 ·5).
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of subgroups, and also of elements in them. If you don’t believe this, cross-check Table
4.2 with pencil and paper for yourself. (Yes, really!) Given any generator g for G10, it
should be easy to see why g2 is a generator for a subgroup half as large, and g5 generates a
subgroup one-fifth as large. At the right end of the lower table, the cycle repeats because
here exponents are modulo 10, so 210 ≡ 20 = 1 mod 11 (as noted, for integers mod p,
exponent arithmetic is modulo p− 1). Note that element b = 10 has order 2 and is a
member of both G2 = {1,−1} (the subgroup of order 2) and G10. b = 10 ≡ −1 is not in
the subgroup of order 5; and 2 does not divide 5. (Is that a coincidence? See F2.) Note
that the indexes i such that gcd(i,10) = 1 are i = 1,3,7,9, and these are the four values
for which gi also generates the full group G10. (Is this a coincidence? See F4.)

Exercise (Multiplicative groups: p = 19,23,31). By hand, replicate Table 4.2 for Z∗p
for a) p = 19 = 2 ·3 ·3+1; b) p = 23 = 2 ·11+1; and c) p = 31 = 2 ·3 ·5+1. (F2 will
tell you what orders to expect; use F3 to confirm the number of generators found.)

COMMENT ON EXPONENT ARITHMETIC (F1). In Gn notation we often think ab-
stractly of “group operations” and associate elements with their exponent relative to a
fixed generator, rather than their common implementation representation in integer arith-
metic mod p. Consider p = Rq+ 1. The multiplicative group Z∗p is a cyclic group of
p− 1 elements. In mod p representation, “exponent arithmetic” can be done mod p− 1
since that is the order of any generator. Z∗p has a cyclic subgroup Gq of q elements, and
when expressing elements of Gq as powers of a Gq generator, exponent arithmetic is mod
q. However, the subgroup operations are still implemented using mod p (not mod q); the
mod q reduction is for dealing with exponents. Thus switching between Z∗p and Gq nota-
tion, and between elements and their indexes (exponents), requires precision of thought.
We mentally distinguish between implementation in “modular arithmetic”, and “group
operations”. It may help to re-read this and work through an example with q = 11.

SAFE PRIMES, DSA PRIMES, SECURE PRIMES. Let p be a prime modulus used
for Diffie-Hellman (DH) exponentiation. The security of Diffie-Hellman key agreement
relies on it being computationally difficult to compute discrete logarithms (Section 4.3).
It turns out that the Pohlig-Hellman discrete log algorithm is quite efficient unless p−
1 has a “large” prime factor q, where “large” means that

√
q operations is beyond the

computational power of an attacker. (So for example: if an attacker can carry out on the
order of 2t operations, q should have bitlength more than 2t; in practice, a base minimum
for t is 80 bits, while 128 bits offers a comfortable margin of safety.)

For Diffie-Hellman security, the following definitions are of use. Recall (F2 above)
that the factors of p−1 determine the sizes of possible subgroups of Z∗p = Gp−1.

1. A PH-safe prime is a prime p such that p− 1 itself has a “large” prime factor q as
described above. The motivation is the Pohlig-Hellman algorithm noted above. Larger
q causes no security harm (attacks become computationally more costly).

2. A safe prime is a prime p = 2q+ 1 where q is also prime. Z∗p will then have order
p− 1 = 2q, and (by F2) will have exactly two proper cyclic subgroups: Gq with q
elements, and G2 with two elements (1, p−1). Remember: p−1≡−1 mod p.

3. A DSA prime is a prime p = Rq+1 with a large prime factor q of p−1. Traditionally,
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here q is chosen large enough to be PH-safe, but not much larger. The idea is to
facilitate DH computations in the resulting DSA subgroup Gq of q elements, since by
F2, a prime-order group has no small subgroups other than easily-detected G1 = {1}.
A historical choice was to use p of 1024 bits and a 160-bit q; a more conservative
choice now is p of 2048 bits and a 256-bit q.

4. A secure prime is a prime p = 2Rq+1 such that q is prime, and either R is also prime
or every prime factor qi of R is larger than q, i.e., p = 2qq1q2 · · ·qn + 1 for primes
qi > q. Secure primes can be generated much faster than safe primes, and are believed
to be no weaker against known attacks.

Aside: the term strong prime is unavailable for DH duty, allocated instead for service in
describing the properties of primes necessary for security in RSA moduli of form n = pq.

SUBGROUP CONFINEMENT ATTACK ON DH. Let the DH prime be p = Rq + 1
(assume q is a large prime as required, i.e., a PH-safe prime). R itself may be very large,
but typically it will have many smaller divisors d (e.g., since R must be even, 2 is always
a divisor). Let g be a generator for Z∗p. For any such d, b = g(p−1)/d has order d (from
F6). The attack idea is to push computations into the small, searchable subgroup of order
d. To do this so that both parties still compute a common K, intercept (e.g., via a middle-
person attack) the legitimate exponentials ga,gb and raise each to the power (p−1)/d; the
resulting shared key is K = gab(p−1)/d = (g(p−1)/d)ab = bab. Since b has order d, this key
can take on only d values. Such attacks highlight the importance of integrity-protection
in protocols (including any system parameters exchanged).

Exercise (Toy example of small-subgroup confinement). Work through a tiny example
of the above attack, using p = 11 (building on examples from above). Use R = 2 = d,
q = 5, g = 2. The DH private keys should be in the range [1,9].

Exercise (Secure primes and small-subgroup confinement). Suppose that p is a secure
prime, and a check is made to ensure that the resulting key is neither 1 nor p−1 (mod p).
Does the above subgroup confinement attack succeed?

Exercise (DSA subgroups and subgroup confinement attack). Consider p = Rq+ 1
(prime q), and DH using as base a generator gq of the cyclic subgroup Gq.
(a) If an attacker substitutes exponentials with values (integers mod p) that are outside of
those generated by gq, what protocol checks could detect this?
(b) If an attacker changes one of the public exponentials but not both, the parties likely
obtain different keys K; discuss possible outcomes in this case.

ESSENTIAL PARAMETER CHECKS FOR DIFFIE-HELLMAN PROTOCOLS. The
subgroup confinement attack can be addressed by various defenses. Let K denote the
resulting DH key, and x = ga, y = gb (mod p) the exponentials received from A, B.

1. Case: DH used with a safe prime p = 2q+1 (here a generator g for Gp is used). Check
x 6= 1 or p− 1 (mod p); and that x 6= 0 (or equivalently, check K 6= 0). Similarly for
y. These checks detect if x or y were manipulated into the tiny subgroup G2 of two
elements. Note: −1 = p−1 (mod p).

2. Case: DH used with a DSA prime (and a generator g = gq for Gq). The above checks
are needed, plus checks that x,y are in Gq by confirming: xq ≡ 1 (mod p), and analo-
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gously for y. (Thus the value q must also be communicated to end-parties.)
The powering check isn’t needed if the protocol itself verifies integrity of exchanged

values (as in STS). The extra cost for Gq exponentiation, beyond an equality test for 0,
1, −1, is mitigated by exponent math being mod q (in a DSA subgroup, q� p).

3. Case: DH used with a secure prime (here a generator g = gq for Gq is used). Here the
checks for the above DSA prime case suffice (this is a subcase), but only the checks
for the safe prime case are essential—because in an untampered run using base gq,
exponentials remain in Gq; and altering exponentials cannot result in a small-subgroup
attack (other than G2, ruled out by the checks of the safe prime case) because every
other subgroup Gqi is larger than Gq, because qi > q.

4. Case: DH used with a protocol that detects tampering of messages (e.g., STS). This
detection will then detect small-subgroup attacks, which tamper with exponentials. In
all cases, integrity of the DH generator g and modulus p must also be ensured. As
a bonus, techniques that provide end-to-end authentication also preclude successful
middle-person attacks.

SHORT DH EXPONENTS FOR EFFICIENCY. When DSA primes are used for DH,
the base used is a generator gq for Gq. Since exponent arithmetic is modulo the order of the
base, DH exponents a, b can thus be reduced mod q, making exponentiation considerably
faster. In essence, short exponents are used—with q known, private exponents a, b are
simply chosen in [1,q− 1], vastly smaller than [1, p− 1]. With safe primes, one can
also use private exponents of this size—but in both cases, no shorter since specialized
discrete log algorithms (parallelizable with linear speedup) can find 2t-bit exponents in 2t

operations. Thus for attackers capable of 280 operations, exponents must be at least 160
bits. DSA subgroups of order 2256 are matched with t = 128-bit exponents.

SAFE PRIME ADVANTAGES (SUMMARY). The advantage of using a safe prime
(p = 2q+ 1) is that the guaranteed absence of small prime factors of p− 1 (other than
2) precludes subgroup confinement attacks, and there is no need to communicate to DH
end-parties an extra parameter such as the value q in the DSA prime case (p = Rq+ 1).
The secure prime case conveys these same benefits. These cases can also utilize “short”
DH exponents (above), e.g., choosing DH exponents a,b in the range 2m−1 < a,b < 2m if
m-bit exponents are deemed sufficient (m often equals the bitlength of a DSA prime q).

KEY-USE CONFIRMATION IS NOT ENOUGH. Confirmation by end-parties that they
have agreed upon the same key, i.e., key-use confirmation, does not guarantee the absence
of an attack. An attacker changing both exponentials to 0 (or 1), forces both parties to
compute K = 0 (or K = 1). Thus confirming an agreed key is insufficient, and different
than verifying non-tampering of the values that you believe were exchanged to get it.

COMPARING MIDDLE-PERSON AND SMALL-SUBGROUP ATTACK. Subgroup con-
finement requires an active attack during key agreement; after successful determination of
the shared key, passive traffic monitoring allows decryption with the known key. In con-
trast, a DH middle-person attack requires active involvement during key agreement, plus
ongoing inline participation (decrypting, encrypting, and forwarding data). In this respect,
the subgroup attack is simpler—but also stopped by simple checks at the endpoints.
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Exercise (Diffie-Hellman small subgroups and timing attacks discussed in RFC 7919).
(a) Discuss how RFC 7919 [18] proposes to ameliorate small-subgroup attacks on TLS.
(b) Discuss the attacks motivating this text in RFC 7919, Section 8.6 (Timing Attacks):
“Any implementation of finite field Diffie-Hellman key exchange should use constant-time
modular-exponentiation implementations. This is particularly true for those implemen-
tations that ever reuse DHE [Diffie-Hellman Ephemeral] secret keys (so-called “semi-
static” ephemeral keying) or share DHE secret keys across multiple machines (e.g., in a
load-balancer situation).”

4.9 ‡End notes and further reading

The highly accessible and definitive encyclopedia on authentication and authenticated key
establishment is Boyd [9]. It includes discussion of protocol goals, good keys, and formal
verification of authentication protocols including the BAN logic [12] and others. See
Menezes [34, Ch.12] for a shorter systematic treatment, and also for random numbers and
pseudo-random number generators (PRNGs), a topic discussed less formally by Ferguson
[15]. The grandmaster postal chess attack is attributed to John Conway circa 1976. On
interleaving attacks, Bird [8] systematically examines symmetric-key protocols, while
Diffie [14] gives examples including public-key protocols. HTTP digest authentication
is specified in RFC 7616 [41]. Bellovin [6] discusses partition attacks on RSA-EKE and
DH-EKE. For guessing attacks on Kerberos passwords, see Wu [50]. Kerberos and many
other protocols were inspired by the Needham-Schroeder shared-key protocol [35]. Also
of general interest on engineering crypto protocols and what goes wrong, see Abadi [1]
and Anderson [3]. For a survey on secure device pairing methods, see Kumar [28].

Both EKE [6] and SPEKE [25] require that verifiers store cleartext passwords; pass-
word file compromise is mitigated by augmented versions [7, 26]. Steiner [42] proposed
the minimal three-message version of EKE. High-profile alternatives include SRP [49, 48]
and J-PAKE [23, 21]. For an independent analysis of J-PAKE, see Abdalla [2]. Patel
[39] discusses subtle active attacks on EKE. For security concerns about SPEKE, see Hao
[24]. Boyd [9, Ch.7] authoritatively summarizes the abundant academic analysis of PAKE
protocols; Kaufman [27] lucidly overviews a subset. The three examples in Section 4.6
follow Gong [19], who also pursues a formal definition of verifiable text. The definition
of forward secrecy is from Diffie [14], which elucidates the STS protocol, and the general
notion that legitimate end-parties have matching protocol transcripts in secure protocol
runs. For unknown key-share attacks see Boyd [9] and Law [29]. Many variants of DH
with long-term secret keys exist ([34, p.515–519], [29]), but non-ephemeral DH variants
have a poor track record [30] against small-subgroup attacks.

Neuman [36] overviews Kerberos V5; see also RFC 4120 [37]. Section 4.7 is based
on Menezes [34, p.501]. Pashalidis [38] gives an SSO taxonomy. Wang [47] explores
flaws in web SSO including OpenID; see Mainka [33] for OpenID Connect, NIST SP
800-63C [20] for federated identity systems, and Chiasson [13] for password managers.
Section 4.8 background is based on Menezes [34]; page 19 thereof defines strong prime.
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Schnorr’s signature scheme [40] used prime-order subgroups prior to the later-named DSA
primes in NIST’s Digital Signature Algorithm. Regarding discrete log algorithms, see van
Oorschot [46, 45] respectively for general parallelization with linear speedup, and to find
exponents of size 22t (i.e., 2t bits) in order 2t operations. Regarding “trap-dooring” of a
1024-bit prime p and taking a Diffie-Hellman log in such a system, see Fried [16]. Small-
subgroup attacks were already published in 1996 [34, p.516]. Simple checks to prevent
them, and corresponding checks before issuing certificates, were a prominent topic circa
1995-1997 (cf. [51]). Early papers highlighting that Diffie-Hellman type protocols must
verify the integrity of values used in computations include: Anderson (with Needham)
[4], van Oorschot [45], Jablon [25], Anderson (with Vaudenay) [5], and Lim [30]. A
2017 study [43] found that prior to its disclosures, such checks remained largely unim-
plemented on Internet servers. For algorithms to efficiently generate primes suitable for
Diffie-Hellman, RSA and other public-key algorithms, see Menezes [34, Ch.4], and also
Lim [30] for defining and generating secure primes.
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