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Chapter 6

Software Security—Exploits and
Privilege Escalation

Here we discuss known methods to exploit common security vulnerabilities in programs.
The focus of software security (versus, e.g., security software) is exploitable software
implementation errors and design flaws; this may be combined with abuse of a system’s
architectural features and functionality. Once malicious software or individuals gain a
foothold on (entry point into) a computer system, this is followed, if necessary, by tech-
niques to elevate privileges from those of a regular user to a superuser (e.g., Administrator
on Windows, or Unix/Linux root). This allows access to all files, resources, and privileged
commands, including for changing access permissions of other users. Many software se-
curity problems relate to weak memory management controls; the headline example is
exploits related to buffer overflows (indexing beyond the bounds of fixed-length buffers).

For context, software security attacks differ from stealing or guessing passwords
(Chapter 3), web-related injection attacks (Chapter 9), and Chapter 7’s discussion of cate-
gories of malware based on spreading tactics or end-goals after having gained a foothold.
For example, rootkits may use buffer overflow exploits and shellcode to gain their foothold
and then additional techniques to maintain their hidden presence; herein we discuss the
technical means to gain the foothold.

This chapter spends most of its pages outlining how attacks work, i.e., illustrating
insecurity. Why so? Understanding attacks is necessary in order to devise technical
defenses. Attackers are well-versed in their art, widely sharing knowledge and point-
and-click toolkits on shady web sites. Should defenders remain uneducated? Presenting
concrete attack details in understandable language also helps cut short arguments about
whether attacks are feasible. Even better is live demonstration on fielded systems (with
prior permission) as in penetration testing (Chapter 11). While anti-virus software, fire-
walls and intrusion detection systems are useful defensive tools, software security has
emerged as its own defensive subdiscipline, from the realization that a major root cause
of security problems is poor quality of ordinary software itself, independent of the things
around it, or security-specific mechanisms within it.
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6.1. Race conditions and resolving filenames to resources 157

6.1 Race conditions and resolving filenames to resources

As noted in Chapters 1 and 5, principle P4 (COMPLETE-MEDIATION) states that a system
should verify authorization before granting access to a resource, ideally immediately prior.
The timing concern is due to races, discussed here in the limited context of filesystem
races. We also consider the broader issue of resolving filenames to the expected resources.

TOCTOU RACE. Suppose an access control file permission check is made at time
t1, and the object is accessed at time t2 > t1. A common implicit assumption is that the
condition checked does not change from time-of-check to time-of-use (TOCTOU). But
in multi-processing systems with interrupts, things do change—e.g., meta-data like file
permissions and owners, the object a filename resolves to, or arguments passed to called
routines. When a condition check made at one instant is relied on later, and there is a
chance that in the interval something changes the outcome—including due to malicious
actions that increase the likelihood of change—then an exploitable race condition may
exist. This situation has occurred in a surprising diversity of situations, and such TOCTOU

races require special attention by system designers and developers.

Ch.6.		Race	condi.on	(file	system	TOCTOU,	hard	link).	The	user		
process	has	permissions	to	access	the	file	in	a).	The	file	is	then		
deleted,	and	a	new	file	with	the	same	name	is	created,		
poin.ng	(i.e.,	hardlinked)	to	a	file	that	the	user	does	not	have	
permissions	to	access.			
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Figure 6.1: Filesystem TOCTOU race. a) A user process U is permitted to write to a file.
b) The file is deleted, and a new file created with the same name references a resource that
U is not authorized to write to. The security issue is a permission check made in state a)
and relied on later, after change b). See Chapter 5 for filesystem structures.

Example (Privilege escalation via TOCTOU race). As a concrete Unix example, con-
sider P, a root-owned setuid program (Chapter 5) whose tasks include writing to a file
that the invoking user process U supposedly has write access to. By a historically com-
mon coding pattern, P uses the syscall access() to test whether U’s permissions suffice,
and proceeds only if so; this syscall check uses the process’ real UID and GID, e.g., rUID,
whereas open() itself uses the effective UID (eUID, which is root as stated, and thus al-
ways sufficiently privileged). The access test returns 0 for success (failure is -1). Thus
P’s code sequence is:

1: if(access("file",PERMS REQUESTED)==0)then
2: filedescr = open("file", PERMS) % now proceed to read or write

But after line 1 and before line 2 executes, an attacker alters the binding between the
filename and what it resolved to in line 1 (see Fig. 6.1). Essentially, the attacker executes:
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1.1: unlink("file") % delete name from filesystem
1.2: link("/etc/passwd", "file") % new file entry links to passwd

Now when P proceeds to write to “file”, it overwrites the password file. Process U does
not have permission to do this, but P does (as root-owned and setuid). Due to this issue
(dating back to 1993), use of access() for such checks is now largely discouraged.

MITIGATING RACES. The underlying problem is that lines 1 and 2 do not execute
atomically, and the mapping of filename to referenced object (inode) changes; atomic ac-
tions are desired, as in transaction systems. Simply disabling interrupts is not a viable
solution—not all interrupts can be safely disabled, not all processes can wait while others
run uninterrupted, and in multi-processor systems that share memory and other resources,
this may require disabling interrupts on all processors. For the example above, one sug-
gested alternative to using access() is to set the eUID to rUID (and similarly eGID to
rGID) before calling open(), although this approach is not portable across OSs due to
system library inconsistencies, e.g., in setuid(). A second alternative is to drop privileges
then fork() an unprivileged child, which proceeds with an open() attempt and, if success-
ful, makes the file descriptor accessible to the parent before exiting; this also tends to be
non-portable. A standard means to avoid file access races is wherever possible to use sys-
tem calls that deal directly with file descriptors (they are not subject to change, whereas the
referent of a filename may); however, system calls that support filenames do not always
have equivalent support for file descriptors. For other means to mitigate filename-based
privilege escalation including TOCTOU races, see the end notes (Section 6.9).

Example (Safe-to-resolve filenames). Intuition can mislead. Consider an attempt to
make a filename “safe” to use, in the sense of ensuring an authentic file-to-resource reso-
lution, immune to malicious alteration.1 Directory entry hopefully (Fig. 6.2) references a
directory file (inode) that user hope owns and has exclusive R, W, X permissions on, i.e.,
no other regular users or groups have any permissions on this inode. Next hope creates
a regular file safe in this controlled directory. Now hope appears to have control over
two files (inodes), at levels 4 and 5. The question is: If a process running under hope’s
UID tries to access file hopefully/safe, is it guaranteed that the resource accessed will be
the one just created? The answer is no. If the full pathname is /usr/zdir/hopefully/safe,
and malicious (non-root) user tricky has full permissions on the inode referenced by the
(level 3 in figure) zdir directory entry, then tricky can remove (by renaming) hopefully
from zdir, and create an entirely new directory file, and regular file, both using the old
names. Now a file reference to /usr/zdir/hopefully/safe retrieves tricky’s bogus file safe.
The lesson is that a method aiming to guarantee “safely resolvable” filenames must be
wary of parent directories up to “/”. Note here that even if hope controlled the inode at
level 3, an attacker with control of the level 2 inode could cause similar problems.

‡Example (/tmp file exploits). The following is a typical exploit on world-writable
directories, used by utility programs for temporary files. Directory permissions are com-
monly 1777 (including the sticky bit, Chapter 5). A well-known C compiler (gcc) gener-

1The (false) idea is that safety results from controlling write permission on files within directory hopefully.
Attacks to beware of here are related to principle P19 (REQUEST-RESPONSE-INTEGRITY).
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Figure 6.2: An attempt to make a filename “safe to resolve”. The directory at level 4 (left)
is under the control of user hope, i.e., no other regular user has any R, W or X permissions
on this level 4 inode. Malicious user tricky has full permissions on the level 3 inode.
Chapter 5 gives background on inodes and directory structure.

ates a sequence of files, e.g., intermediate (.i), assembly (.s), and object (.o). For these,
it uses a unique filename prefix (denoted by zzzzzz here) generated as a random string
by a system function. Knowing this, an attacker program can await the appearance of new
.i files, and itself create (before the compiler) a symlink file with name /tmp/zzzzzz.o,
symbolically linked to another file. If the compiler process has sufficient privileges, that
other file will be overwritten in the attempt to access /tmp/zzzzzz.o. This may be called
a file squatting attack. For certain success, the attack program awaits a root process to
run the compiler (root can overwrite any file). A subtle detail is the compiler’s use of a
system call open() with flag O CREAT, requesting file creation unless a file by that name
pre-exists, in which case it is used instead. (Example based on: Dowd [25, p.539].)

‡Exercise (TOCTOU race: temporary file creation). An unsafe coding pattern for
creating temporary files involves a stat-open sequence similar to the first example’s
access-open sequence, and similarly vulnerable to an attack, but now using a symbolic
(rather than a hard) link. a) Find a description of this pattern and attack, and provide the
C code (hint: [60]). b) Explain the attack using a diagram analogous to Figure 6.1.

6.2 Integer-based vulnerabilities and C-language issues

Integer-based vulnerabilities are exploitable code sequences due to integer bugs: errors
related to how integers are represented in memory. They arise from arithmetic operations,
and from side effects of type conversions between integer types of different widths or
signedness (signed vs. unsigned). We explain how these vulnerabilities occur, how they
can be exploited, and approaches to address the issues. Integer-based vulnerabilities do
not themselves involve injection of executable code, shell commands, or scripts, and thus
are distinct from buffer overflow vulnerabilities (where a further issue is failure to enforce



160 Chapter 6. Software Security—Exploits and Privilege Escalation

address bounds on memory structures) and other attacks involving code injection.
FOCUS ON C. We focus on C, as the biggest problems arise in C-family programming

languages (including C++). While some vulnerabilities occur more widely—e.g., integer
overflows (below) occur in Java—C faces additional complications due to its eagerness
to allow operations between different data types (below). Moreover, security issues in C
have wide impact, due to its huge installed base of legacy software from being the histor-
ical language of choice for systems programming, including operating systems, network
daemons, and interpreters for many other languages. Studying C integer-based vulnera-
bilities thus remains relevant for current systems, and is important pedagogically for its
lessons, and to avoid repeating problematic choices in language design.

C CHAR. To begin, consider the C char data type. It uses one byte (8 bits), and
can hold one character. It is viewed as a small integer type and as such, is commonly
used in arithmetic expressions. A char is converted to an int (Table 6.1) before any
arithmetic operation. There are actually three distinct types: signed char, unsigned
char, and char. The C standard leaves it (machine) “implementation dependent” as to
whether char behaves like the first or the second. A char of value 0x80 is read as +128
if an unsigned integer, or −128 if a signed integer—a rather important difference. This
gives an early warning that operations with C integers can be subtle and error-prone.

Bit Range
Data type length unsigned signed

char 8 0..255 −128..127
short int 16 0..65535 −32768..32767
int 16 or 32 0..UINT MAX INT MIN..INT MAX

long int 32 0..232−1 −231..231−1
long long 64 0..264−1 −263..263−1

Table 6.1: C integer data types (typical sizes). C integer sizes may vary, to accommodate
target machines. Type int must be at least 16 bits and no longer than long. Undeclared
signedness (e.g., int vs. unsigned int) defaults to signed, except for char (which is left
machine-dependent). The C99 standard added exact-length signed (two’s complement)
integer types: intN t, N = 8,16,32,64. For an n-bit int, UINT MAX = 2n−1.

INTEGER CONVERSIONS. C has many integer data types (Table 6.1), freely con-
verting and allowing operations between them. This flexibility is alternatively viewed as
dangerous looseness, and C is said to have weak type safety, or be weakly typed. (As
another example of weak type safety in C: it has no native string type.) If an arithmetic
operation has operands of different types, a common type is first arranged. This is done
implicitly by the compiler (e.g., C automatically promotes char and short to int before
arithmetic operations), or explicitly by the programmer (e.g., the C snippet “(unsigned
int) width” casts variable width to data type unsigned int). Unanticipated side ef-
fects of conversions are one source of integer-based vulnerabilities. C’s rule for converting
an integer to a wider type depends on the originating type. An unsigned integer is zero-
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extended (0s fill the high-order bytes); a signed integer is sign-extended (the sign bit is
propagated; this preserves signed values). Conversion to a smaller width truncates high-
order bits. Same-width data type conversions between signed and unsigned integers do
not alter any bits, but change interpreted values.

†Exercise (C integer type conversion). Build an 8-by-8 table with rows and columns:
s-char, u-char, s-short, u-short, s-int, u-int, s-long, u-long (s- is signed; u- unsigned). As
entries, indicate conversion effects when sources (row headings) are converted to des-
tinations (columns). Mark diagonal entries “same type”. For each other entry include
each of: value (changed, preserved); bit-pattern (changed, preserved); width-impact (sign-
extended, zero-extended, same width, truncated). (Hint: [25, Chapter 6, page 229].)

INTEGER OVERFLOW IN C. Suppose x is an 8-bit unsigned char. It has range
0..255 (Table 6.1). If it has value 0xFF (255) and is incremented, what value is stored?
We might expect 256 (0x100), but that requires 9 bits. C retains the least significant
8 bits; x is said to wrap around to 0. This is an instance of integer overflow, which
unsurprisingly, leads to programming errors—some exploitable. The issue is “obvious”:
exceeding the range of values representable by a fixed-width data type (and not checking
for or preventing this). Since bounds tests on integer variables often dictate program
branching and looping, this affects control flow. If the value of the variable depends on
program input, a carefully crafted input may alter control flow in vulnerable programs.

Example (Two’s complement). It helps to recall conventions for machine represen-
tation of integers. For an unsigned integer, a binary string bn−1bn−2...b1b0 is interpreted
as a non-negative number in normal binary radix, with value v = ∑

n−1
i=0 bi · 2i. For signed

integers, high-order bit bn−1 is a sign bit (1 signals negative). Two’s complement is almost
universally used for signed integers; for example in 4-bit two’s complement (Table 6.3,
page 164), incrementing binary 0111 to 1000 causes the value to wrap from +7 to −8.

Example (Integer overflow: rate-limiting login). Consider the pseudo-code:
handle_login(userid, passwd) % returns TRUE or FALSE
attempts := attempts + 1; % increment failure count
if (attempts <= MAX_ALLOWED) % skip if over limit of 6
{ if pswd_is_ok(userid, passwd) % if password is correct

{ attempts := 0; return(TRUE); } % reset count, allow login
} % else reject login attempt
return(FALSE);

It aims to address online password guessing by rate limiting. Constant MAX ALLOWED (6) is
intended as an upper bound on consecutive failed login attempts, counted by global vari-
able attempts. For illustration, suppose attempts were implemented as a 4-bit signed
integer (two’s complement). After six incorrect attempts, on the next one the counter
increments to 7, the bound test fails, and handle login returns FALSE. However if a per-
sistent guesser continues further, on the next invocation after that, attempts increments
from 7 (binary 0111) to 8 (binary 1000), which as two’s complement is -8 (Table 6.3). The
condition (attempts <= MAX ALLOWED) is now TRUE, so rate limiting fails. Note that a
test to check whether a seventh guess is stopped would falsely indicate that the program
achieved its goal. (While C itself promotes to int, 16 bits or more, the issue is clear.)



162 Chapter 6. Software Security—Exploits and Privilege Escalation

MODULAR WRAPPING VS. UNDEFINED. To be more precise: for unsigned in-
teger operands, the C standard officially declares that overflow does not exist: results
that mathematically overflow an n-bit type are reduced modulo 2n (truncated at n bits).
In contrast for signed integers, C dictates that overflow (and underflow) results in un-
defined behavior—the operation is not illegal or prevented, but the result is machine-
dependent. In practice, overflow of a signed integer typically wraps around to a negative
value, and decrementing the largest representable negative integer results in wrap-around
to the largest positive value. Other languages handle this differently, e.g., Python does
automatic type promotion to larger-width data types.

INTEGER UNDERFLOW IN C. As qualified above, decrementing a negative integer
below its smallest representable value wraps around to a positive in two’s complement
arithmetic; this is an integer underflow. Logic errors thus result from the (false) expec-
tation that decreasing a negative number will never change its sign (and analogously for
increasing a positive integer). The core C language has no built-in mechanism to prevent,
check, raise alerts, or terminate programs on integer overflow or underflow.

Example (Integer overflow on multiplication). On a machine where an int is 16 bits,
suppose that width and height are unsigned int C variables derived from user input.
A program then dynamically allocates memory for an array of width*height elements.
Attacker input results in these values being 235, 279. Now 235∗279 = 65565 = 216 +29
or 0x1001D. To get a 16-bit result, C truncates to 001D, and a malloc() intended to return
memory for 65565 elements instead gets room for 29. The memory pointer returned,
bigtable, is used to index elements bigtable[i][j]. This ends up referencing memory
outside of that allocated for this data structure; C does not check this.

CATEGORIES OF INTEGER BUGS. Table 6.2 gives definitions and examples of five
main categories of integer-based vulnerabilities: integer overflow, underflow, signedness
mismatch, loss of information on narrowing, and value-change due to sign extension.
These arise from arithmetic operations (e.g., +,−,∗,/, <<, >>) on integer types,2 plus
moves or type conversions that widen (with zero-extension, sign-extension) or narrow
(truncation) or change the binary interpretation between unsigned and two’s complement.

C POINTER ARITHMETIC. C indexes arrays using a subscript operator: b[i] eval-
uates ((b)+(i)) in pointer arithmetic, then dereferences the resulting address to ex-
tract a value denoted *(b+i) as “pointer and offset”. The integer expression (i) is com-
puted with arithmetic conversion and promotion rules as above (negative results allowed).
Pointer arithmetic means the offset is scaled: if b is defined to have 4-byte elements, i is
multiplied by 4 before adding. C does not support adding two pointers, but two same-type
pointers can be subtracted; the difference represents a number of elements (not an address
difference). Unsurprisingly, security issues arise from the combination of this flexibility
in pointer dereferencing, C allowing casting of an integer to a pointer, and unexpected
integer values from arithmetic operations and conversions per Table 6.2.

SOFTWARE CONSEQUENCES. Integer-based vulnerabilities are indirect: issues arise

2“<<” is left-shift, e.g., multiply by 2; this may spill into the sign bit. Right-shift of a signed integer may
be logical (0-filling the vacated sign bit) or arithmetic (sign-filling it); C leaves this machine-dependent.
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Category Description Examples

integer overflow value exceeds maximum
representable in data type,

adding 1 to 16-bit UINT 0xFFFF yields not
0x10000, only low-order 16 bits 0x0000

e.g., >INT MAX (signed)
or >UINT MAX

multiplying 16-bit UINTs produces a 16-bit
result in C, losing high-order 16 bits

integer underflow value below minimum
representable in data type,

subtracting 1 from signed char 0x80
(−128) yields 0x7F (+127), i.e., wraps

e.g., (unsigned) <0
or (signed) <INT MIN

subtracting 1 from 16-bit UINT 0x0000 (0)
yields 0xFFFF (+65535)

signedness mismatch
(same-width integers)

signed value stored into
unsigned (or vice versa)

assigning 16-bit SINT 0xFFFE (−2) to 16-
bit UINT will misinterpret value (+65534)
assigning 8-bit UINT 0x80 (128) to 8-bit
SINT changes interpreted value (−128)

narrowing loss on assigning to narrower
data type, truncation loses

assigning 32-bit SINT 0x0001ABCD to 16-bit
SINT loses non-zero top half 0x0001

meaningful bits or causes
sign corruption

assigning SINT 0x00008000 to 16-bit SINT

gives representation error 0x8000 (−215)

extension value change sign extension of signed
integer to wider unsigned

assigning signed char 0x80 to 32-bit
UINT changes value to 0xFFFFFF80

(Beware: short, and also
often char, are signed)

assigning 16-bit SINT 0x8000 to 32-bit
UINT changes value to 0xFFFF8000

Table 6.2: Integer-based vulnerability categories. UINT, SINT are shorthand for unsigned,
signed integer. Assignment-like conversions occur on integer promotion, casts, function
parameters and results, and arithmetic operations. Table 6.3 reviews two’s complement.

in later use of the integers. Failed sanity checks and logic errors result from variables
having unexpected values. Exploitable vulnerabilities typically involve integer values that
can be influenced by attacker input; many involve malloc(). Common examples follow.
1) Normal indexes (subscripts) within an array of n elements range from 0 to n− 1.

Unexpected subscript values resulting from integer arithmetic or conversions enable
read and write access to unintended addresses. These are memory safety violations.

2) Smaller than anticipated integer values used as the size in memory allocation requests
result in under-allocation of memory. This may enable similar memory safety viola-
tions, including buffer overflow exploits (Section 6.4).

3) An integer underflow (or other crafted input) that results in a negative size-argument
to malloc() will be converted to an (often very large) unsigned integer. This may allo-
cate an enormous memory block, trigger out-of-memory conditions, or return a NULL

pointer (the latter is returned if requested memory is unavailable).
4) A signed integer that overflows to a large negative value may, if compared to an upper

bound as a loop exit condition, result in an excessive number of iterations.
INTEGER BUG MITIGATION. While ALU flags (page 165) signal when overflows

occur, these flags are not accessible to programmers from the C-language environment.
If programming in assembly language, instructions could be manually inserted immedi-
ately after each arithmetic operation to test the flags and react appropriately (e.g., calling
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Bitstring Unsigned one’s complement two’s complement Notes
0000 0
0001 1 leftmost bit 0
0010 2 represents signals
0011 3 same value as positive integer
0100 4 unsigned
0101 5 remaining bits
0110 6 specify magnitude
0111 7
1000 8 −7 −8
1001 9 −6 −7 leftmost bit is sign
1010 10 −5 −6 bit (1 if negative)
1011 11 −4 −5
1100 12 −3 −4 one’s complement
1101 13 −2 −3 has a redundant −0;
1110 14 −1 −2 two’s complement
1111 15 −0 −1 has an extra value

Table 6.3: Interpretations of 4-bit strings as unsigned and signed integers. The magnitude
of a negative bitstring is: for one’s complement, the bitwise complement of the lower
(rightmost) 3 bits; for two’s complement, that value plus one.

warning or exit code). While non-standard, some C/C++ compilers (such as GCC, Clang)
offer compile options to generate such instructions for a subset of arithmetic operations.
A small number of CPU architectures provide support for arithmetic overflows to generate
software interrupts analogous to memory access violations and divide-by-zero. In many
environments, it remains up to developers and their supporting toolsets to find integer
bugs at compile time, or catch and mitigate them at run time. Development environ-
ments and developer test tools can help programmers detect and avoid integer bugs; other
options are binary analysis tools, run-time support for instrumented safety checks, replac-

Hardware result Unsigned interpretation, see two’s compl. interpretation, see
signed & unsigned carry flag reason CF OF reason overflow flag

1001+0001 = 1010 9+1 = 10 — 0 0 — -7+ 1 = -6
0010+0111 = 1001 2+7 = 9 — 0 1 sign 2+ 7 = -7
1111+0010 = 0001 15+2 = 1 carry 1 0 — -1+ 2 = 1
1001+1001 = 0010 9+9 = 2 carry 1 1 sign -7 + -7 = 2
1001−0001 = 1000 9−1 = 8 — 0 0 — -7− 1 = -8
1001−0010 = 0111 9−2 = 7 — 0 1 sign -7− 2 = 7
0001−0010 = 1111 1−2 = 15 borrow 1 0 — 1− 2 = -1
0010−1001 = 1001 2−9 = 9 borrow 1 1 sign 2 − -7 = -7

Table 6.4: Arithmetic operations and hardware flags CF (carry), OF (overflow), 4-bit ex-
amples. Despite being unaware of semantic intent, the same hardware addition instruction
can be used whether the operands are unsigned or two’s complement; similarly for sub-
traction. The flags—CF for unsigned operations, OF for signed operations—signal errors
in computed results due to size-limited precision. The results meet hardware arithmetic
specifications; software must check the flags to address any error cases.
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ing arithmetic machine operations by calls to safe integer library functions, automated
upgrading to larger data widths when needed, and arbitrary-precision arithmetic. None
of the choices are easy or suitable for all environments; specific mitigation approaches
continue to be proposed (Section 6.9). A complication for mitigation tools is that some
integer overflows are intentional, e.g., programmers rely on wrap-around for functional
results such as integer reduction modulo 232.

COMMENTS: INTEGER BUGS, POINTERS. We offer a few comments for context.

i) While we can debate C’s choice to favor efficiency and direct access over security,
our challenge is to deal with the consequences of C’s installed base and wide use.

ii) Integer bugs relate to principle P15 (DATA-TYPE-VERIFICATION) and the importance
of validating all program input—in this case arithmetic values—for conformance to
implicit assumptions about their data type and allowed range of values.

iii) How C combines pointers with integer arithmetic, and uses pointers (array bases) with
the subscripting operation to access memory within and outside of defined data struc-
tures, raises memory safety and language design issues beyond P15 (and beyond our
scope). Consequences include buffer overflow exploits (a large part of this chapter).

‡Exercise (Two’s complement representation). Note the following ranges for n-bit
strings: unsigned integer [0,2n − 1]; one’s complement [−(2n−1 − 1),2n−1 − 1]; two’s
complement [−2n−1,2n−1− 1]. The n-bit string s = bn−1bn−2...b1b0 interpreted as two’s
complement has value: v = −bn−1 · 2n−1 +∑

n−2
i=0 bi · 2i. a) Verify that this matches the

two’s complement values in Table 6.3. b) Draw a circle as a clock face, but use integers
0 to N−1 to label its hours (0 at 12 o’clock); this shows how integers mod N wrap from
N − 1 to 0. c) Draw a similar circle, but now use labels 0000 to 1111 on its exterior
and corresponding values 0,+1, ...,+7,−8,−7, ...,−1 on its interior. This explains how
overflow and underflow occur with 4-bit numbers in two’s complement; compare to Table
6.3. d) To add 3 to 4 using this circle, step 3 units around the clock starting from 4. To
add −3 = 1101 (13 if unsigned) to 4, step 13 steps around the clock starting from 4 (yes,
this works [30, §7.4]). This partially explains why the same logic can be used to add
two unsigned, or two two’s complement integers. e) The negative of a two’s complement
number is formed by bitwise complementing its string then adding 1; subtraction may
thus proceed by negating the subtrahend and adding as in part d). Verify that this works
by computing (in two’s complement binary representation): 3− 4. (Negation of an n-bit
two’s complement number x can also be done by noting: −x = 2n− x.)

‡CARRY BIT, OVERFLOW BIT. Some overflows are avoidable by software checks
prior to arithmetic operations; others are better handled by appropriate action after an
overflow occurs. Overflow is signaled at the machine level by two hardware flags (bits)
that Arithmetic Logic Units (ALUs) use on integer operations: the carry flag (CF) and
overflow flag (OF). (Aside: the word “overflow” in “overflow flag” names the flag, but the
flag’s semantics, below, differ from the typical association of this word with the events
that set CF.) Informally, CF and OF signal that a result may be “wrong”, e.g., does not
fit in the default target size. Table 6.4 gives examples of setting these flags on addition
and subtraction. (The flags are also used on other ALU operations, e.g., multiplication,
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shifting, truncation, moves with sign extension; a third flag SF, the sign flag, is set if the
most-significant bit of a designated result is 1.) CF is meaningful for unsigned operations;
OF is for signed (two’s complement). CF is set on addition if there is a carry out of the
leftmost (most significant) bit, and on subtraction if there is a borrow into the leftmost
bit. OF is set on addition if the sign bit reverses on summing two numbers of the same
sign, and on subtraction if a negative number minus a positive gives a positive, or a posi-
tive minus a negative gives a negative. The same hardware circuit can be used for signed
and unsigned arithmetic (exercise above); the flags signal (but do not correct) error con-
ditions that may require attention. For example, in Table 6.4’s third line, the flags differ:
CF=1 indicates an alert for the unsigned operation, while OF=0 indicates normal for two’s
complement.

‡Example (GCC option). The compile option -ftrapv in the GCC C compiler is de-
signed to instrument generated object code to test for overflows immediately after signed
integer add, subtract and multiply operations. Tests may, e.g., branch to handler routines
that warn or abort. Such insertions can be single instruction; e.g., on IA-32 architectures,
jo, jc and js instructions jump to a target address if the most recent operation resulted
in, respectively, an overflow (OF), carry (CF), or most-significant bit of 1 (SF).

6.3 Stack-based buffer overflows

Pouring in more water than a glass can hold causes a spill. If more bytes are written to
a buffer or array than allocated for it, an analogous spill may overwrite content in adja-
cent memory. Such buffer overflows are not prevented in languages like C, and perhaps
surprisingly, remain an ongoing issue on many platforms. A buffer overflow that occurs
“naturally” (not intentionally) causes unpredictable outcomes—ranging from a system
crash, or incorrect program output (sometimes unnoticed), to no ill effects at all (e.g., the
memory overwritten is unused or irrelevant to program execution). Of greater interest is
when an overflow is triggered with malicious intent, i.e., a buffer overflow attack.

Ch.7.	Typical	memory	layout,	user-space.		This	example	layout	is	used	to	explain	the	
basic	concepts	of	memory	management	exploits	involving	buffer	overflows.		

High	memory	

program	code	
(read-only,	no	buffers)	

Low	memory	

global	data,	iniDalized	
(vars,	compiler	constants)	

global	data,	uniniDalized		
(zeroed	on	loading)	

dynamically	allocated	
(under	program	control)	

automaDc	(non-staDc)	local	vars,	
call-by-value	parameters,	
call	frames	

typical	buffer		
overflow	targets	

Stack	

	Heap	

BSS	

Data	

Text	

Figure 6.3: Common memory layout (user-space processes).
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MEMORY LAYOUT (REVIEW). We use the common memory layout of Fig. 6.3 to
explain basic concepts of memory management exploits. In Unix systems, environment
variables and command line arguments are often allocated above “Stack” in this figure,
with shared libraries allocated below the “Text” segment. BSS (block started by symbol)
is also called the block storage segment. The data segment (BSS + Data in the figure)
contains statically allocated variables, strings and arrays; it may grow upward with re-
organization by calls to memory management functions.

STACK USE ON FUNCTION CALLS. Stack-based buffer overflow attacks involve
variables whose memory is allocated from the stack. A typical schema for building stack
frames for individual function calls is given in Fig. 6.4, with local variables allocated on
the stack (other than variables assigned to hardware registers). Reviewing notes from a
background course in operating systems may help augment this summary overview.

Ch.7.	User-space	stack	events	(C	func5on	calls).	The	frame	pointer	may	be	

called	the	Base	Pointer.	Saved	register	state	is	typically	also	stored	on	

the	stack	(not	shown),	e.g.,	between	FP	(old)	and	local	vars.				

1.  calling	func5on	pushes	args	onto	stack		
2.  “call”	opcode	pushes	Instruc5on	Pointer	(IP)	

as	return	address,	then	sets	IP	to	begin	

execu5ng	code	in	called	func5on	

3.  called	func5on	pushes	FP	for	later	recovery	
4.  FP	ß	SP	(so	FP	points	to	old	FP),	

now		FP+k	=	args,		FP-k	=	local	vars	

5.  decrement	SP,	making	stack	space	for	local	vars	

6.  called	func5on	executes	un5l	ready	to	return	
7.  called	func5on	cleans	up	stack	before	return	

(SP	ß	FP	,	FP	ß	old	FP	popped	from	stack)	

8.  “ret”	opcode	pops	return	address	into	IP,	
to	resume	execu5on	back	to	calling	func5on	

High	memory	

Low	memory	

FP:	frame	pointer	

SP:	stack	pointer	

stack	grows	

down	

FP		

SP		

local	vars	of	

called	func5on	

pre-call	

stack	frame	of	

calling	func5on	

	return	addr	

old	FP	

arg2	

arg1	

..
.	

Figure 6.4: User-space stack and function call sequence (x86 conventions). FP is also
called BP (Base Pointer). Register state may also be saved onto the stack (not shown).

Example (Buffer overflow). With memory layout per Fig. 6.4, and a machine with
4-byte memory words, consider this contrived C function to illustrate concepts:

void myfunction(char *src) /* src is a ptr to a char string */
{ int var1, var2; /* 1 stack word used per integer */

char var3[4]; /* also 1 word for 4-byte buffer */

strcpy(var3, src); /* template: strcpy(dst, src) */
}

Figure 6.5 shows the stack frame once this function is called. Local variables allocated
on the stack include var3; it can hold a character string of length 3, plus a final NUL
byte (0x00) to signal end-of-string, per C convention. The C library string-copy routine,
strcpy(), copies byte for byte from source to destination address, stopping only after
copying a string-terminating NUL. If n denotes the length of the string that src points
to, then if n > 3 a buffer overflow occurs, and memory at addresses higher than (above)
var3 will be overwritten, marching through var2 towards and past the frame’s return ad-
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Ch.7.	Overflow	of	a	local	variable	on	the	stack.			

An	overflow	of			
buffer	var3		

overwrites	higher		
memory,		including:		

return	addr	

SP		

rest	of	
previous	frame	

increasing	addresses	

old	FP	
	return	addr	

var1	
var2	
var3	

arg1	=	src	
The	overwriIen		
return	address	
may	point	back	
into	injected	code	or	
to	any	other	address	

...
	

Figure 6.5: Buffer overflow of stack-based local variable.

dress if n is large enough. When myfunction() returns, the Instruction Pointer (Program
Counter) is reset from the return address; if the return address value was overwritten by
the string from src, program control still transfers to the (overwriting) value. Now sup-
pose the string src came from malicious program input—both intentionally longer than
var3, and with string content specifically created (by careful one-time effort) to overwrite
the stack return address with a prepared value. In a common variation, this value is an
address that points back into the stack memory overwritten by the overflow of the stack
buffer itself. The Instruction Pointer then retrieves instructions for execution from the
(injected content of the) stack itself. In this case, if the malicious input (a character string)
has binary interpretation that corresponds to meaningful machine instructions (opcodes),
the machine begins executing instructions specified by the malicious input.

‡NO-OP SLED. Among several challenges in crafting injected code for stack execu-
tion, one is: precisely predicting the target transfer address that the to-be-executed code
will end up at, and within this same injected input, including that target address at a loca-
tion that will overwrite the stack frame’s return address. To reduce the precision needed to
compute an exact target address, a common tactic is to precede the to-be-executed code by
a sequence of machine code NOP (no-operation) instructions. This is called a no-op sled.3

Transferring control anywhere within the sled results in execution of the code sequence
beginning at the end of the sled. Since the presence of a NO-OP sled is a telltale sign of an
attack, attackers may replace literal NOP instructions with equivalent instructions having
no effect (e.g., OR 0 to a register). This complicates sled discovery.

6.4 Heap-based buffer overflows and heap spraying

Beyond the stack, overflows may affect buffers in heap memory and the data segment
(BSS and Data in Fig. 6.3). Traditionally, many systems have left the heap and BSS
not only writable (necessary), but also executable (unnecessary, dangerous). The data

3This term may make more sense to readers familiar with bobsleds or snow toboggans, which continue
sliding down a hill to its bottom (the code to be executed).
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Ch.7.	Heap	overflow.	Wri1ng	past	the	end	of	a	buffer	can	overflow	adjacent	
variables	in	the	case	of	heap-allocated	variables	also.		a)	Overflows	into	a	
permissions-related	variable.	Case	(b)	overflows	into	a	func1on	pointer	variable.	

ABCD	0123	
bufferX[0..3]	

[0]	 [1]	 [3]	[2]	

a)	permsY	
89AB	CDEF	0123	4567	 increasing	memory		

addresses	

inline	meta-data	used		
in	some	heap	allocators	

89AB	CDEF	0123	4567	

b)	fnptrZ	

FEDC	2468	
Figure 6.6: Heap-based buffer overflow. Writing past the end of a heap-allocated buffer
can overwrite adjacent heap-allocated variables. a) A permissions-related variable may be
overwritten. b) A function pointer may be overwritten. Both cases highlight that program
decisions are affected not only by program code itself, but also by data.

segment can also be subdivided into read-only (e.g., for constants) and read-write pieces.
While here we focus on heap-based exploits, data in any writable segment is subject to
manipulation, including environment variables and command-line arguments (Fig. 6.3).
A buffer is allocated in BSS using a C declaration such as: static int bufferX[4].

OVERFLOWING HIGHER-ADDRESS VARIABLES. How dynamic memory allocation
is implemented varies across systems (stack allocation is more predictable); attackers ex-
periment to gain a roadmap for exploitation. Once an attacker finds an exploitable buffer,
and a strategically useful variable at a nearby higher memory address, the latter variable
can be corrupted. This translates into a tangible attack (beyond denial of service) only if
corruption of memory values between the two variables—a typical side effect—does not
“crash” the executing program (e.g., terminate it due to errors). Figure 6.6 gives two ex-
amples. In the first, the corrupted data is some form of access control (permission-related)
data; e.g., a FALSE flag might be overwritten by TRUE. The second case may enable over-
writing a function pointer (Fig. 6.7) holding the address of a function to be called. Over-
writing function pointers is a simple way to arrange control transfer to attacker-selected
code, whereas simple stack-based attacks use return addresses for control transfer.

Ch.7.	Func*on	pointer	manipula*on.	

fnptr:	 �	
fn2:	

fn1:	

fn3:	

(a)	before	manipula*on	

(b)	a<er	manipula*on	

a=acker-chosen	code:	

Figure 6.7: Corrupting a function pointer to alter program control flow. How the attacker-
chosen code is selected, or injected into the system, is a separate issue.

TYPE OF STATE CORRUPTED. For exploits related to memory management, it is
instructive to consider the types of variables involved. As noted earlier, program control
flow can be directly altered by corrupting data interpreted as a code address, such as:

a) stack-based pointers, including return addresses and frame pointers;

b) function pointers (allocated in the stack, heap or static area), including in any func-
tion address lookup table (jump table, dispatch table, virtual table or vtable);
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c) addresses used in C-language setjmp/longjmp functions. (These are used in non-
standard call sequences, such as for exception-handling or co-routines.)

d) (indirectly) by corrupting data used in a branching test; however, the branch is to a
fixed address. Section 6.2 contains a related example involving integer overflows.

GENERIC EXPLOIT STEPS. Having considered stack- and heap-based attacks, note that
many buffer overflow and related exploits involve three functional steps:
1. Code injection or location. Code that the attacker desires to be executed is somehow

placed within the target program’s address space. If existing system utilities or other
code meet the attacker’s goal, injection is not needed, just the address of the code.

2. Corruption of control flow data. One or more data structures is overwritten, e.g., by a
buffer overflow corrupting adjacent data. This may be separate from or part of step 1.
The corruption sets up later transfer of control, directly to the step 1 address if known.

3. Seizure of control. Program control flow is transferred to the target code of step 1. This
may be by simply waiting after having engineered the transfer by step 2.
HEAP SPRAYING. Heap spraying is a method that places into the heap a large number

of instances of attacker-chosen code (Figure 6.8). This achieves step 1 above; an inde-
pendent exploit is relied on for step 2. It has been a popular means to exploit browsers in
drive-by download attacks (Chapter 7). The attack allocates a large number (e.g., thou-
sands) of heap objects, their content chosen by the attacker. This might consume 1–100
megabytes. It is arranged, e.g., by embedding into HTML pages served by a web site,
a script that allocates 10,000 strings in a simple JavaScript loop, assigning to each ele-
ment of an array a constant string whose bytes are an opcode sequence of a long no-op
sled (Section 6.3) followed by shellcode (Section 6.8). An alternative is to arrange that
rendering a visited web page loads an image that results in the end-user machine allocat-
ing similar heap objects. Step 2 (above) may use any means (e.g., corrupting a function
pointer) that transfers program control to the heap. The more objects and the longer the
no-op sleds, the higher the probability that a transfer to an arbitrary heap address will hit
a sled to slide into the shellcode. In selecting the address pointing into the heap, attackers
use knowledge of typical memory layout to increase their success probability. This attack
need not involve a buffer overflow; it often uses JavaScript (a type-safe language); and it
is not stopped by defenses that randomize heap layout (Section 6.6).

Ch.6.	Heap	spraying.		Once	the	program	u6lizes	the	corrupted		func6on	
pointer,	the	Program	Counter	starts	execu6ng	code	from	the	heap.		
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Figure 6.8: Heap spraying. Once the program utilizes the corrupted function pointer, the
Instruction Pointer begins retrieving code for execution from the heap.



6.5. ‡Return-to-libc exploits 171

‡Exercise (Exploiting heap maintenance). C-family programs allocate dynamic mem-
ory using malloc(), with underlying system calls that manage heap memory in blocks or
chunks. For heaps with inline meta-data, each chunk starts with a header field indicating
whether the chunk is free or allocated, and a next-chunk pointer using a singly or doubly
linked list. Overflowing a buffer allocated from such heap memory can overwrite pointers
as explained above. a) Summarize how this enables malicious overwriting of arbitrary
memory locations (hint: [5]). b) Discuss secure heap allocator defenses (hint: Sect. 6.9).

‡Exercise (Format string vulnerabilities). A class of attacks distinct from overflows
and heap spraying exploits how format strings interact with system memory management
in function families such as C’s printf(format, string). When the first argument
format string is a dynamic variable (rather than a constant like "%s"), the rich functionality
provided enables reading and writing at arbitrary memory addresses. Look up and explain
format string attacks and defenses (hint: [49] or [7, pages 125-128], and Section 6.9).

6.5 ‡Return-to-libc exploits

Some buffer overflow attacks inject code into the run-time stack or heap memory, and
then execute that code. As noted in Section 6.6, such attacks can be stopped if support for
non-executable memory ranges is available and utilized. However, this defense does not
stop return-to-libc attacks, described next.

STACK-BASED RETURN-TO-LIBC ATTACK. Such an attack may proceed as follows.
A return address is overwritten as in stack-based attacks above, but now it is pointed to
transfer execution not to new code located on the stack itself, but to existing (authorized)
system code, e.g., implementing a system call or a standard library function in libc—with
parameters arranged by the attacker. A particularly convenient such function is system(),
which takes one string argument, with resulting execution as if the string (typically the
name of a program plus invocation parameters) were entered at a shell command line.
Unix-type operating systems implement system() by using fork() to create a child pro-
cess, which then executes the command using execl() per Section 6.8, and returning from
system() once the command has finished. The call to execl() may be of the form

execl("/bin/sh", "sh", "-c", cmd, 0x00)

to invoke bin/sh (commonly the bash shell), instructing it to execute the command cmd.
The attacker puts the parameter cmd in the stack location where the invoked library func-
tion would normally expect to find it as an argument. See Figure 6.9.

RETURN-TO-LIBC WITH STRCPY OF SHELLCODE. In a second example of a
return-to-libc attack that defeats non-executable stacks, where system() was used above,
now strcpy() is called. It copies a string from a specified source to a specified destination
address; these addresses are part of the data injected into the buffer, now arranged as stack
arguments for strcpy(). The injected data also includes shellcode (Section 6.8), and the
call to strcpy() copies that from the (non-executable) stack to a location in a segment that
is both writable and executable (perhaps heap; the Text segment is now commonly non-
writable). The stack return address that will be used by strcpy(), in place of the address of
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Ch.7.	Return-to-libc	a3ack	using	user-space	stack.	The	a3ack	overflows	a	local	
variable	on	the	stack,	such	that	the	return	address	points	to	the	library	func@on	
system().		The	system()	code	expects	the	usual	stack	frame	above	it.	The	a3ack	
may	wish	to	over-write	what	will	be	used	as	the	return	address	upon	comple@on	
of	system()	with	the	address	of	the	system	call	exit(),	for	an	orderly	return	rather		
than	a	likely	memory	viola@on	error.	

	addr(	system()	)	
	addr(	exit()	)	
	addr(“cmd”)	

stack		
as	modified	
by	a3acker	

stack			
as	viewed	by		

OS	and	system()	
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allocated	

...
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Figure 6.9: Return-to-libc attack on user-space stack. A local stack variable is overflowed
such that the return address becomes that of the library call system(), which will expect
a “normal” stack frame upon entry, as per the rightmost frame. If what will be used as
the return address upon completion of system() is also overwritten with the address of the
system call exit(), an orderly return will result rather than a likely memory violation error.

exit() in Figure 6.9, is set to also point to the destination address for the shellcode. This
results in the shellcode being executed on the return from strcpy().

6.6 Buffer overflow exploit defenses and adoption barriers

BUFFER OVERFLOW COUNTERMEASURES. Various measures can counter buffer over-
flow attacks. As a general distinction, compile-time techniques reduce the number of vul-
nerabilities by changing software before deployment (e.g., compiler tools flag potential
issues for developers to examine), while others involve run-time mechanisms to prevent
exploitation of vulnerabilities; some defenses combine these. The former often impose ex-
tra work on developers, while the latter incur run-time overhead and changes to run-time
support. Well-known approaches include the following, among a number of others.
1) NON-EXECUTABLE STACK AND HEAP. Buffer overflow attacks that execute injected

code directly on the stack or heap itself can be stopped if support exists to flag speci-
fied address ranges as non-executable memory. Address ranges assigned to the stack,
heap and BSS can then be marked invalid for loading via the Instruction Pointer (Pro-
gram Counter). More generally, data execution prevention (DEP) techniques may be
provided by hardware (with an NX bit) or software. However, support being available
does not guarantee its use—e.g., due to accommodating backwards compatibility, be-
ing disabled by an attacker, or use of just-in-time (JIT) run-time systems that require
an executable heap. Also, DEP prevents execution but not overwriting of memory
itself, and thus does not stop all attacks involving memory safety violations.

2) STACK PROTECTION (RUN-TIME). Stack canaries are checkwords used to detect
code injection. An extra field is inserted in stack frames just below (at lower address
than) attack targets such as return addresses—in Fig. 6.4, just above the local variables.
A buffer overflow attack that corrupts all memory between the buffer and the return
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address will overwrite the canary. A run-time system check looks for an expected (ca-
nary) value in this field before using the return address. If the canary word is incorrect,
an error handler is invoked. Heap canaries work similarly; any field (memory value)
may be protected this way. Related approaches are shadow stacks and pointer protec-
tion (e.g., copying return addresses to OS-managed data areas then cross-checking for
consistency before use; or encoding pointers by XORing a secret mask, so that attacks
that overwrite the pointer corrupt it but cannot usefully modify the control flow).

3) RUN-TIME BOUNDS-CHECKING. Here, compilers instrument code to invoke run-
time support that tracks, and checks for conformance with, bounds on buffers. This
involves compiler support, run-time support, and run-time overhead.

4) MEMORY LAYOUT RANDOMIZATION (RUN-TIME). Code injection attacks require
precise memory address calculations, and often rely on predictable (known) memory
layouts on target platforms. To disrupt this, defensive approaches (including ASLR)
randomize the layout of objects in memory, including the base addresses used for run-
time stacks, heaps, and executables including run-time libraries. Some secure heap
allocators include such randomization aspects and also protect heap meta-data.

5) TYPE-SAFE LANGUAGES. Operating systems and system software (distinct from
application software) have historically been written in C. Such systems languages al-
low type casting (converting between data types) and unchecked pointer arithmetic
(Section 6.2). These features contribute to buffer overflow vulnerabilities. In con-
trast, strongly-typed or type-safe languages (e.g., Java, C#) tightly control data types,
and automatically enforce bounds on buffers, including run-time checking. A related
alternative is to use so-called safe dialects of C. Programming languages with weak
data-typing violate principle P15 (DATA-TYPE-VERIFICATION).

6) SAFE C LIBRARIES. Another root cause of buffer overflow vulnerabilities in C-
family languages is the manner in which character strings are implemented, and the
system utilities for string manipulation in the standard C library, libc. As a background
reminder for C: character strings are arrays of characters; and by efficiency-driven
convention, the presence of a NUL byte (0x00) defines the end of a character string.
An example of a dangerous libc function is strcpy(s1, s2). It copies string s2 into
string s1, but does no bounds-checking. Thus various proposals promote use of safe
C libraries to replace the historical libc, whose string-handling functions lack bounds-
checks. One approach is to instrument compiler warnings instructing programmers to
use substitute functions; this of course does not patch legacy code.

7) STATIC ANALYSIS TOOLS (COMPILE-TIME, BINARIES). If the vulnerable code
itself did bounds-checking, many buffer overflow errors would be avoided. Thus an
available defense is to train developers to do bounds-checking, and support this by
encouraging use of compile-time tools, e.g., static analysis tools that flag memory
management vulnerabilities in source code for further attention. Binaries can also be
analyzed. (Aside: even if adopted, such tools miss some vulnerabilities, and raise false
alarms. Discussion of dynamic analysis and related approaches is beyond our scope.)

‡Exercise (Control flow integrity). Summarize how compile-time (static) analysis can
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be combined with run-time instrumentation for control flow integrity, stopping program
control transfers inconsistent with compile-time analysis (hint: [1, 2]; cf. [12]).

ADOPTION BARRIERS. The above list of countermeasures to buffer overflow attacks,
while incomplete, suffices to highlight both a wide variety of possible approaches, and the
difficulty of deploying any one of them on a wide basis. The latter is due to fundamental
realities about today’s worldwide software ecosystem, including the following.

i) No single governing body. While some standards groups are influential, no corpora-
tion, country, government, or organization has the power to impose and enforce rules
on all software-based systems worldwide, even if ideal solutions were known.

ii) Backwards compatibility. Proposals to change software platforms or tools that intro-
duce interoperability problems with existing software or cause any in-use programs
to cease functioning, face immediate opposition.

iii) Incomplete solutions. Proposals addressing only a subset of exploitable vulnerabili-
ties, at non-trivial deployment or performance costs, meet cost-benefit resistance.

Clean-slate approaches that entirely stop exploitable buffer overflows in new software are
of interest, but leave us vulnerable to exploitation of widely deployed and still heavily
relied-upon legacy software. The enormous size of the world’s installed base of software,
particularly legacy systems written in vulnerable (page 160) C, C++ and assembler, makes
the idea of modifying or replacing all such software impractical, for multiple reasons:
cost, lack of available expertise, unacceptability of disrupting critical systems. Nonethe-
less, much progress has been made, with various approaches now available to mitigate
exploitation of memory management vulnerabilities, e.g., related to buffer overflows.

‡Exercise (Case study: buffer overflow defenses). Summarize the effectiveness of
selected buffer overflow defenses over the period 1995-2009 (hint: [56]).

6.7 Privilege escalation and the bigger picture

A typical attack may proceed as follows. On a victim machine, an attacker first gets some
code of her choosing (or under her control) to run, e.g., by exploiting a buffer overflow—
call it base-camp code. If this cannot itself accomplish the attack end-goal, it is used as
a stepping stone to run other programs, transfer control to other routines, or spawn new
processes. If the base-camp code has insufficient flexibility or privileges to achieve the
end-goal, privilege escalation is also used—changing the execution environment in some
way to reduce constraints or increase privileges, as described below. Privilege escalation
motivates principle P6 (LEAST-PRIVILEGE); a process with fewer privileges results in less
damage when compromised.

FORMS OF ESCALATION. Example levels of ability or privilege escalation are:

i) moving from the fixed functionality of a compiled program to a shell allowing execu-
tion of arbitrary commands and other programs;

ii) moving from an isolated “sandbox” to having access to a complete filesystem;
iii) moving from a non-root process to code running with UID 0; and
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iv) moving from UID 0 privileges (user-space process) to kernel-mode privileges.

For item ii), the isolated environment might be, e.g., a filesystem jail (Chapter 5) or a
browser sandbox (preventing the browser from accessing local files other than in /tmp).
An example of iii) involves exploiting file access race conditions (Section 6.1).

Example (Escalation via root-owned setuid). One path to a root shell is to find a
root-owned setuid program vulnerable to buffer overflow injection. Consider these steps:

1. An attacker has local access via a user-space process (e.g., shell) on a target machine.
The machine hosts a vulnerable root-owned setuid program as noted.

2. A crafted input including shellcode (Section 6.8) is supplied to the setuid program,
e.g., as command line input from this shell. The input overflows a buffer in such a way
that injected code executes and spawns a new shell. It will run as root.4

3. The attacker may now type commands into the root shell (via stdin), redirect scripted
commands from a stored file, or retrieve commands over the network.

PRIVILEGES AND TCP/IP PORTS. On some systems, TCP/IP ports 0-1023 are declared
privileged ports—a process must run as root to bind to a privileged port and provide
services (open it to listen for and process packets sent to it).5 In turn, processes running
on privileged ports are trusted—parties connecting to them expect non-malicious services,
and safety in belief that the host machine owner allows only trustworthy processes to serve
these ports. If a root-privileged network daemon (background process receiving network
packets) is vulnerable to a base-camp attack, superuser privileges are easily gained—e.g.,
it suffices to execute, on the daemon code, a buffer overflow injection that spawns a new
shell. That shell inherits the daemon’s UID and associated privileges (Section 6.8).

COMMON FAILURES TO LIMIT PRIVILEGES. The above-noted trust in services on
privileged ports is at times misplaced. For example, on any personal computer, regular
work should be done on non-root accounts, with root used only when necessary (e.g., for
configuration or software installation). This provides protection against a user uninten-
tionally deleting, for example, the entire filesystem. However, often for convenience or
due to oversight, a root account is used for regular operations (perhaps by continued use
of an original default account); then compromise of any process run under that account
surrenders superuser privileges. Similarly, despite best practices dictating that only well-
scrutinized, time-tested programs be bound to privileged ports, vulnerable programs may
be, increasing exposure to privilege escalation.

‡Example (Remote-access shellcode). Above, the buffer overflow attack provided a
root shell to a local-access attacker. For a network daemon (e.g., SSH or FTP service)
exploited by a remote attacker to spawn a root shell, the procedure is similar, but now
the victim machine communicates data to the remote attacker over the TCP/IP connection
as usual for remote users. By convention, as a child process, the new shell inherits the
standard streams (stdin, stdout) of its parent, and network connectivity is maintained.

4Chapter 5 explains how process UID affects privileges. Section 6.8 reviews process creation details.
5Linux capabilities [29] are privilege units; CAP NET BIND SERVICE allows binding to ports 0–1023.
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6.8 ‡Background: process creation, syscalls, shells, shellcode

Here we review basic concepts that aid in understanding attacker exploits in the chapter.
We use Unix examples; other systems operate analogously. Section 5.4 on setuid programs
also considers inheritance of parent UIDs in process creation, fork() and exec().

SHELLCODE (TERMINOLOGY). A command shell provides a well-defined interface
to system utilities. From it, arbitrary system commands or other programs can be run by
specifying the program name (filepath if needed) and arguments. A common attack goal
is to obtain a shell running with UID of root (root shell), e.g., by causing a process to
transfer execution to an instruction sequence that creates a new shell process that then
cedes execution as explained below. Used narrowly, the term shellcode refers to a short
sequence of injected code that creates a command shell when executed—ideally a root
shell; this is the literal and historical usage. More broadly, shellcode refers to injected
code that when run, achieves a specific attack task—possibly transferring control to a
longer stream of attack instructions or launching further (malicious) executables.

SYSCALLS AND C LIBRARY (BACKGROUND). Low-level kernel operations such
as reading and writing files depend on details specific to particular operating systems and
hardware platforms. These operations are implemented by syscalls (system calls), which
themselves are often accessed through C-language wrapper functions closely resembling
each, packaged in a common user-space C library, libc. The libc functions make syscalls
after handling system-specific details, e.g., using assembly code to load parameters in
registers depending on platform conventions, and invoking a TRAP or software interrupt
switching the processor mode from user to supervisor/kernel. System calls thus run in
supervisor mode, and are how kernel resources are accessed. (Aside: supervisor refers
to a privileged CPU mode, e.g., providing access to restricted machine instructions; in
contrast, superuser (root) is a process running in user space like other user processes,
albeit with more privileges, e.g., to run some executables that regular processes cannot.)

COMMAND SHELLS AND FORK (BACKGROUND). An OS command line interpreter
(shell) is not part of the core OS, but provides access to many OS features and is a main

Ch.6.		Fork	from	shell	to	execute	a	command.	

process	forks	to	run	
command	“passwd”	

cmd	shell	

parent	waits		
for	child		
to	finish	

child	clone	

passwd	

call	to	execve()	overlays	image	
with	passwd	program	
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cmd	shell	
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Figure 6.10: Command shell forking a child process to execute a command.
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system interface for users; graphical user interfaces (GUIs) are an alternative. When a
Unix user logs in from a device (logical terminal), the OS starts up a shell program as a user
process, waiting to accept commands; the user terminal (keyboard, display) is configured
as default input and output channels (stdin, stdout). When the user issues a command
(e.g., by typing a command at the command prompt, or redirecting input from a file), the
shell creates a child process to run a program to execute the command, and waits for the
program to terminate (Fig. 6.10). This proceeds on Unix by calling fork(), which clones
the calling process; the clone recognized as the child (Chapter 5) then calls execve() to
replace its image by the desired program to run the user-requested command. When the
child-hosted task completes, the shell provides any output to the user, and prompts the user
for another command. If the user-entered command is followed by an ampersand “&”, the
forked child process operates in the background and the shell immediately prompts for
another command. For an analogous shell on Windows systems, "cmd.exe" is executed.

EXECVE SHELL (BACKGROUND). Sample C code to create an interactive shell is:
char *name[2];

name[0] = "sh"; /* NUL denotes a byte with value 0x00 */
name[1] = NULL; /* NULL denotes a pointer of value 0 */
execve("/bin/sh", name, NULL);

We may view execve() as the core exec()-family system call, with general form:
execve(path, argv[ ], envp[ ])

Here path (pointer to string) is the pathname of the file to be executed; "v" in the name
execve signals a vector argv of pointers to strings (the first of which names the file to ex-
ecute); "e" signals an optional envp argument pointer to an array of environment settings
(each entry a pointer to a NUL-terminated string name=value); NULL pointers terminate
argv and envp. The exec-family calls launch (execute) the specified executable, replac-
ing the current process image, and ceding control to it (file descriptors and PID/process
id are inherited or passed in). The filename in the path argument may be a binary exe-
cutable or a script started by convention with: #! interpreter [optional-arg]. Other
exec-family system calls may be front-ends to execve(), e.g., execl(path, arg0, ...)
where "l" is mnemonic for list: beyond path, individual arguments are in a NULL-ended
list of pointers to NUL-terminated strings; arg0 specifies the name of the file to execute
(usually the same as in path, the latter being relied on to locate the executable). Thus
alternative code to start up a shell is:

char *s = "/bin/sh"; execl(s, s, 0x00)

Compiling this C code results in a relatively short machine code instruction sequence,
easily supplied by an attacker as, e.g., program input to a stack-allocated buffer. Note that
the kernel’s exec family syscall then does the bulk of the work to create the shell.

‡SHELLCODE: TECHNICAL CHALLENGES. Some tedious technical conditions
constrain binary shellcode—but pose little barrier to diligent attackers, and solutions are
easily found online. Two challenges within injected code are: eliminating NUL bytes
(0x00), and relative addressing. NUL bytes affect string-handling utilities. Before in-
jected code is executed as shellcode, it is often processed by libc functions—for example,
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if injection occurs by a solicited input string, then string-processing routines will treat a
NUL byte in any opcode as end-of-string. This issue is overcome by use of alternative
instructions and code sequences avoiding opcodes containing 0x00. Relative addressing
(within injected shellcode) is necessary for position-independent code, as the address at
which shellcode will itself reside is not known—but standard coding practices address
this, using (Program Counter) PC-relative addressing where supported; on other archi-
tectures (e.g., x86), a machine register is loaded with the address of an anchor shellcode
instruction, and machine operations use addressing relative to the register. Overall, once
one expert figures out shellcode details, automated tools allow easy replication by others.

6.9 ‡End notes and further reading

Dowd [25] is highly recommended for broad coverage of software security, including
detailed examples of race conditions and integer bugs. Among early white-hat software
security books (focused mainly on protection, to avoid security-related programming de-
sign and implementation errors), Howard [32] gives an extended treatment with focus on
Windows environments; a later shorter offering [33] highlights common software security
errors. In complementary books advancing software security as a subdiscipline, Viega
[62] provides a white-hat compilation while the follow-up black-hat book (offensively-
focused, with code-level attack details) with Hoglund [31] has extended discussion of
attack patterns. Other black-hat treatments are Anley [4] (for shellcode) and McClure
[41]. The Section 6.8 shellcode is from Mudge [43], predating the stack-based buffer
overflow roadmap of Aleph One [3]; these and the heap-based buffer overflow tutorial of
Conover [18] are classic black-hat papers, along with a Phrack article [5] discussing tech-
niques to exploit malloc()-managed memory. See Tanenbaum [58] for crisp background
on operating systems, command shells and system calls.

See Bishop [9] for TOCTOU problems involving filesystem races; Tsafrir [59] offers
a portable solution for a subset of file race conditions, but Cai [14] shows they can be
defeated, and recommends known non-portable (but secure) defenses. Payer’s solution
[45] for file-based race conditions automatically replaces existing system calls with safe
calls that cache meta-data for accessed files. Chari [15] mitigates filename-based privilege
escalation by focusing on safe pathname resolution mechanisms, rather than on race con-
ditions per se; Vijayakumar [63] also provides means to find vulnerabilities in resolving
names to resource references. For extended discussion of how to define and distinguish
filepaths that are safe to resolve, see also Kupsch [38]. To address integer-based vulnera-
bilities, a proposal by Brumley [10] uses compiler-instrumented code providing run-time
checks; similarly, Wurster [66] proposes efficient ARM-specific instruction sequences to
respond to hardware flags signaling overflows and carries. See Regehr [24] for an em-
pirical analysis of integer overflows in C/C++, and Kernighan [36] for C background.
Hamacher [30, §7.4] explains why two’s complement is preferred for representing signed
numbers in logic circuits, and why the same circuit can serve two’s complement and un-
signed operands.
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For early surveys on buffer overflow defenses, see Wilander [65] and Cowan [22].
For systematic studies of memory safety and memory corruption bugs, see van der Veen
[61] and Szekeres [57]; similarly for control flow integrity specifically, see Burow [12].
Dereferencing dangling pointers (pointers to already freed memory) results in use-after-
free errors, or double-free errors if freed a second time, both leading to memory safety
violations; for defenses, see Caballero [13] and Lee [39], and secure heap allocators
(Silverstro [53] provides references) to protect heap meta-data, including by tactics similar
to ASLR (below). For run-time bounds checking, see Jones [35]. Miller’s improvements
[42] to C string handling libraries have enjoyed adoption (but not by the GNU C library).
For memory-safe dialects of C (these require code porting and run-time support), see
CCured [44] and Cyclone [34]. For stack canaries, see StackGuard [21], and its extension
PointGuard [20], which puts canaries next to code pointers, including in heap data. Forrest
[28] proposed randomizing the memory layout of stacks and other data; related address
space layout randomization (ASLR) techniques were popularized by the Linux PaX project
circa 2001, but attacks remain [51]. Keromytis [37] surveys other proposals to counter
code injection using randomization, including instruction set randomization. On format
string vulnerabilities, see Scut’s black-hat exposition [49]; for defenses, see Shankar [52]
and FormatGuard [19]. Shacham’s collection [50, 11, 47] explains return-to-libc attacks
[55] and return-oriented programming (ROP) generalizations; see also Skowyra [54]. For
heap spraying and defenses, see NOZZLE [46] and ZOZZLE [23].

For static analysis to detect buffer overruns, see Wagner [64]; see also Engler [26, 6],
and a summary of Coverity’s development of related tools [8]. A model-checking security
analysis tool called MOPS (MOdel Checking Programs for Security) [17] encodes rules
for safe programming (e.g., temporal properties involving ordered sequences of opera-
tions), builds a model, and then uses compile-time program analysis to detect possible
rule violations. The WIT tool (Write Integrity Testing) [2] protects against memory error
exploits, combining static analysis and run-time instrumentation. For discussion of vul-
nerability assessment, penetration testing and fuzzing, see Chapter 11. For manual code
inspection, see Fagan [27]. For evidence that shellcode may be difficult to distinguish
from non-executable content, see Mason [40].
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