
Computer Security and the Internet: Tools and Jewels

Chapter 7

Malicious Software

7.1 Defining malware . 184
7.2 Viruses and worms . 186
7.3 Virus anti-detection and worm-spreading techniques . 191
7.4 Stealth: Trojan horses, backdoors, keyloggers, rootkits . 194
7.5 Rootkit detail: installation, object modification, hijacking 197
7.6 Drive-by downloads and droppers . 200
7.7 Ransomware, botnets and other beasts . 202
7.8 Categorizing malware . 205
7.9 ‡End notes and further reading . 207
References . 209

The official version of this book is available at
https://www.springer.com/gp/book/9783030336486

ISBN: 978-3-030-33648-6 (hardcopy), 978-3-030-33649-3 (eBook)

Copyright c©2019 Paul C. van Oorschot. Under publishing license to Springer.

For personal use only.

This author-created, self-archived copy is from the author’s web page.

Reposting, or any other form of redistribution, is strictly prohibited.

version: 25 Sept 2019

https://www.springer.com/gp/book/9783030336486

Chapter 7

Malicious Software

This section discusses malicious software (malware) in categories: computer viruses and
worms, rootkits, botnets and other families. Among the many possible ways to name
and classify malware, we use groupings based on characteristics—including propagation
tactics and malware motives—that aid discussion and understanding. We consider why it
can be hard to stop malware from entering systems, to detect it, and to remove it.

Malware often takes advantage of specific software vulnerabilities to gain a foothold
on victim machines. Even when vulnerabilities are patched, and software updates elim-
inate entire classes of previous vulnerabilities, it remains worthwhile to understand past
failures, for awareness of recurring failure patterns. Thus in a number of cases here and
in other chapters, we discuss some malware instances even if the specific details exploited
are now well understood or repaired in software products of leading vendors. The lessons
remain valuable to reinforce good security design principles, lest we repeat past mistakes.

7.1 Defining malware

We define malicious software (malware) as software intentionally designed or deployed
to have effects contrary to the best interests of one or more users (or system owners or ad-
ministrators), including potential damage related to resources, devices, or other systems.
Damage might involve, e.g., data, software, hardware, or compromise of privacy.

In most cases, if users had full knowledge of the design intent or possible conse-
quences of such malware, they would (if given a choice) not allow it to run. In this sense,
malware runs without the explicit approval of an (all-knowing, benign) user. A broader
class, harmful software, includes also software that inadvertently causes damage due to
design or implementation errors. Harmful software is a concern in dependable and secure
computing, but is not our primary focus here—although the same vulnerabilities may
come into play. Indeed, any means by which benign software may end up causing harm
can typically be harnessed maliciously. That said, this chapter is organized around the
strategies and end-goals (design intent) of malware.

QUESTIONS REGARDING MALWARE. We begin with some questions that introduce

184

7.1. Defining malware 185

concepts to be discussed, and help organize our exploration in this chapter.

1. How does malware get onto computer devices? One way is via web sites—by links in
phishing emails, search engine results, and web page ads directing traffic to both com-
promised legitimate sites and malicious sites. (Related pharming attacks, in Chapter
11, disrupt IP address resolution to misdirect browsers.) Downloaded executables that
users intentionally seek may be repackaged to include bundled malware; users may
be tricked to install executables that are either pure malware, or contain hidden func-
tionality; or a site visit may result in software installation without user knowledge.
(As Section 7.6 explains, this may happen by drive-by downloads and malicious ac-
tive content in web pages exploiting browser vulnerabilities, or via applications that
browsers invoke to process content.) Computer worms spread malware by exploiting
vulnerabilities in network communications services. Computer viruses spread by vari-
ous means including malicious email attachments. Malware may also be embedded in
source code in development repositories; legitimate developers may play the role of in-
siders (Chapter 1), or repositories may be compromised by outsiders. Even computer
firmware and hardware may be malicious—depending on how firmware is provided
and updated, and controls within the hardware supply chain.

2. What makes malware hard to detect? Detection is easy in some cases, but hard in
general, for multiple reasons. What malware is depends on context, not functionality
alone—e.g., SSH server software is not generally viewed as malware, but this changes
if it is installed by an attacker for covert access to a system. Indeed, an easy theoret-
ical result (Section 7.2) shows that malware identification is an undecidable problem.
Personal viewpoints may also differ—is a useful program that also displays ads to
generate revenue malware? In this sense, some forms of malware are more aggressive
than others. Often, malware is also specifically designed to be hard to detect, and hard
to reverse-engineer (Sections 7.3–7.5 discuss anti-detection and hiding techniques.)

3. How can installation of malware be prevented? If we can’t decide what malware
is (above), it seems unreasonable to expect any program to prevent all forms of it.
Restricting what software users are allowed to install on their machines reduces risks,
but is both inconvenient and unpopular. Better user education is often suggested, and
useful to some degree, but also difficult, costly, never-ending, and insufficient against
many malware tactics including persuasive social engineering. Malware risks can
be reduced by code-signing architectures that test, before installing or running, that
executable content (including updates) is from known sources. Anti-virus/malware
tools and intrusion detection systems (Chapter 11) are industry-driven partial solutions.
Some tools remove or filter out specific instances of detected malware; in severe cases
a host machine’s entire software base may need to be re-installed with a clean base OS
and all applications—with loss of any data files not recoverable from backup storage.
(Losing files in this way can ruin a good day at the office!)

SOFTWARE CHURN, EASE OF INSTALLATION ENABLE MALWARE. In early com-
puter systems, end-users were not directly involved in software installation or upgrades.
Neither network-downloaded software nor wireless software updates existed. Computers

186 Chapter 7. Malicious Software

came with pre-installed software from device manufacturers. Expert information technol-
ogy (IT) staff would update or install new operating system or application software from
master copies on local storage media via CD ROM or floppy disks. Software upgrades
were frustratingly slow. Today’s ease of deploying and updating software on computing
devices has greatly facilitated rapid evolution and progress in software systems—as well
as deployment of malware. Allowing end-users to easily authorize, install and update al-
most any software on their devices opened new avenues for malware to gain a foothold,
e.g., by tricking users to “voluntarily” install software that misrepresents its true function-
ality (e.g., ransomware) or has hidden functionality (Trojan horse software). Users also
have few reliable signals (see Chapter 9) from which to identify the web site a download
arrives from, or whether even a properly identified site is trustworthy (legitimate sites
may become compromised). These issues are exacerbated by the high “churn rate” of
software on network infrastructure (servers, routers) and end-user devices. Nonetheless,
an evolving set of defenses allows us to (almost) keep up with attackers.

7.2 Viruses and worms

The first types of malware to gain notoriety were computer viruses and worms. They
differ in some aspects, but share a distinguishing propagation feature—they employ clever
means to cause their number of instances to grow, and spread across machines.

DEFINITION: VIRUS. Following pioneer Fred Cohen, we define a computer virus as:
a program that can infect other programs or files by modifying them to include a possibly
evolved copy of itself. A typical virus replicates, spreading to further programs or files on
the same machine; and also across machines aided by some form of human action, e.g.,
inserting into a device a USB flash drive (or floppy disk in the past), or clicking on an email
attachment that turns out to be some form of executable file. A virus embeds itself into a
host program or file that contains some form of executable content, and arranges affairs
such that its own code runs when the host is processed or itself runs. Viruses typically
check whether a file is already infected; infecting only new files is more effective.

Computer virus Computer worm
loop

remain dormant until host runs(); loop
propagate with user help(); propagate over network();
if trigger condition true() then if trigger condition true() then

run payload(); run payload();
endloop; endloop

Table 7.1: Comparison of viruses and worms (pseudo-code). The propagation steps
may be viewed as a strange (malicious) variation of process forking. Viruses are possi-
ble due not to flaws, but to the nature of computers and their features: “If you have a
programmable computer with a filesystem inhabited by both programs and data, you can
make viruses. It doesn’t matter what hardware or operating system you are using” [36].

7.2. Viruses and worms 187

GENERIC STRUCTURE. A high-level comparison of virus and worm structure is
given by the pseudo-code in Table 7.1. It shows four generic parts or stages of a virus.

1. Dormancy. A virus is typically dormant until the host program runs.

2. Propagation. This is when (and how) the malware spreads.

3. Trigger condition. This controls when the payload is executed.

4. Payload. This is the functionality delivered by the malware (other than propagating).
Payload actions range from relatively benign (an image walking across a screen) to
severe (erasing files, or taking software actions that damage hardware).

HOW WORMS DIFFER. Worms differ from viruses in three main ways.

i) Worms propagate automatically and continuously, without user interaction.

ii) Worms spread across machines over networks, leveraging network protocols and
network daemons (rather than infecting host programs beforehand as viruses do).

iii) Worms exploit software vulnerabilities, e.g., buffer overflows, while viruses tend to
abuse software features or use social engineering.

As a result of how they spread, worms are also called network worms or network viruses.
Note from these properties that worms, having no dormant stage, tend to spread more
quickly, and are more likely to overload network communications channel capacity, caus-
ing a form of denial of service (Chapter 11), even when that is not their end-goal.

EMAIL-BASED MALWARE. Email-based malware combining virus and worm prop-
erties is called an email virus, email worm, or mass-mailing worm-virus. It spreads
through email-related file infection, attachments, and features of clients and infrastruc-
ture (often enabled by default). It typically requires a user action (e.g., opening an email
client or reading a message), and may involve social engineering (tricking the user into
taking some action). A common tactic is to extract next-targets from the mail client’s
address book. Since email allows long recipient lists, spreading is one-to-many.

MAGIC, MALWARE AND PRIVILEGES. There is nothing magical about viruses,
worms, and other malware. They are simply software, with power and functionality as
available to other software. On the other hand, the tremendous functionality of regular
software may itself seem magical—and like “ordinary” software, malware can thus do
extraordinarily complex things, especially if it runs with elevated privileges.

Exercise (Malware privileges). Does malware control its own privileges? Explain.
(Hint: Chapter 5, and Section 7.4 for the relationship of root privileges to kernel mode.)

PROGRAM FILE VIRUSES. Most viruses infect executable program files. How and
where virus code is inserted (in the host file) varies. Strategies include (Figure 7.1):

(a) Shift and prepend. The virus code is inserted at the front after shifting the original
file, which is arranged to execute after the virus code. This increases the file length.

(b) Append virus code to end of host file. This is convenient in file formats where the
program entry point JUMPs to a start-execution point within the file. The original
jump target is changed to be the first line of the appended virus code. The virus code
ends by jumping to the originally indicated start-execution point.

188 Chapter 7. Malicious Software

Virus	strategies.	(a)	Shi0	and	prepend.	(b)	Append.		(c)	Overwrite	top.	(d)	Overwrite	interior.	

(a)	 (b)	

Normal	
program	

(unshaded)	

Entry	
point	

Shi0ed	
down	 Run	virus	

code	first	 (c)	 (d)	

Figure 7.1: Virus strategies for code location. Virus code is shaded. (a) Shift and prepend.
(b) Append. (c) Overwrite from top. (d) Overwrite at interior.

(c) Overwrite the host file, starting from the top. The host program is destroyed (so it
should not be critical to the OS’s continuing operation). This increases the chances
that the virus is noticed, and complicates its removal (a removal tool will not have the
original program file content available to restore).

(d) Overwrite the host file, starting from some interior point (with luck, a point that exe-
cution is expected to reach). As above, a negative side effect is damaging the original
program. However an advantage is gained against virus detection tools that, as an
optimization, take shortcuts such as scanning for viruses only at the start and end of
files—this strategy may evade such tools.

Other variations involve relocating parts of program files, copying into temporary files,
and arranging control transfers. These have their own complications and advantages in
different file formats, systems, and scenarios; the general ideas are similar. If the target
program file is a binary executable, address adjustments may be required if code segments
are shifted or relocated; these issues do not arise if the target is an OS shell script.

‡Exercise (Shell script viruses). Aside from binary executables, programs with virus-
like properties can be created using command shells and scripts. Explain, with examples,
how Unix shell script viruses work (hint: [36]).

‡VIRUSES: ALTERNATE DEFINITION. Using command shells and scripts, and en-
vironmental properties such as the search order for executable programs, virus-like pro-
grams can replicate without embedding themselves in other programs—an example is
what are called companion viruses. Szor’s alternative definition for a computer virus is
thus: a program that recursively and explicitly copies a possibly evolved copy of itself.

BRAIN VIRUS (1986). The Brain virus, commonly cited as the first PC virus, is a
boot sector virus.1 Networks were less common; most viruses spread from an infected
program on a floppy disk, to one or more programs on the PC in which the floppy was
inserted, then to other PCs the floppy was later inserted into. On startup, an IBM PC would
read, from read-only memory (ROM), code for its basic input/output system (BIOS). Next,
early PCs started their loading process from a floppy if one was present. After the BIOS,
the first code executed was read from a boot sector, which for a floppy was its first sector.
Execution of boot sector code would result in further initialization and then loading of the
OS into memory. Placing virus code in this boot sector resulted in its execution before
the OS. Boot sector viruses overwrite or replace-and-relocate the boot sector code, so

1Similar malware is called a bootkit (Section 7.4); malware that runs before the OS is hard to detect.

7.2. Viruses and worms 189

that virus code runs first. The Brain virus occasionally destroyed the file allocation table
(FAT) of infected floppies, causing loss of user files. It was not, however, particularly
malicious—and although stealthy,2 the virus binary contained the note “Contact us for
vaccination” and the correct phone number and Pakistani address of the two brothers who
wrote it! On later PCs, the boot sector was defined by code at a fixed location (the first
sector on the hard disk) of the master boot record (MBR) or partition record. Code written
into the MBR would be run—making that an attractive target to write virus code into.

CIH CHERNOBYL VIRUS (1998-2000). The CIH or Chernobyl virus, found first
in Taiwan and affecting Windows 95/98/ME machines primarily in Asia, was very de-
structive (per-device) and costly (in numbers of devices damaged). It demonstrated that
malware can cause hardware as well as software damage. It overwrites critical sectors of
the hard disk including the partition map, crashing the OS; depending on the device’s file
allocation table (FAT) details, the drive must be reformatted with all data thereon lost. (I
hope you always carefully back up your data!) Worse yet, CIH attempts to write to the
system BIOS firmware—and on some types of Flash ROM chip, the Flash write-enable
sequence used by CIH succeeds. Victim machines then will not restart, needing their
Flash BIOS chip reprogrammed or replaced. (This is a truly malicious payload!) CIH
was also called Spacefiller—unlike viruses that insert themselves at the top or tail of a
host file (Figure 7.1), it inserts into unused bytes within files (in file formats that pad up
to block boundaries), and splits itself across such files as necessary—thus also defeating
anti-virus programs that look for files whose length changes.

DATA FILE VIRUSES AND RELATED MALWARE. Simple text files (plain text with-
out formatting) require no special processing to display. In contrast, modern data doc-
uments contain embedded scripts and markup instructions; “opening” them for display
or viewing triggers associated applications to parse, interpret, template, and preprocess
them with macros for desired formatting and rendering. In essence, the data document is
“executed”. Two types of problems follow. 1) Data documents may be used to exploit
software vulnerabilities in the associated programs, resulting in a virus on the host ma-
chine. 2) Such malware may spread to other files of the same file type through common
templates and macro files; and to other machines by document sharing with other users.

‡Exercise (Macro viruses: Concept 1995, Melissa 1999). (a) Summarize the techni-
cal details of Concept virus, the first “in-the-wild” macro virus infecting Microsoft Word
documents. (b) Summarize the technical details of another macro virus that infected such
documents: Melissa. (Aside: neither had a malicious payload, but Melissa gained atten-
tion as the first mass-mailing email virus. Spread by Outlook Express, it chose 50 email
addresses from the host’s address book as next-victim targets.)

‡Exercise (Data file malware: PDF). Find two historical incidents involving malware
in Adobe PDF (Portable Document Format) files, and summarize the technical details.

VIRUS DETECTION: UNDECIDABLE PROBLEM. It turns out to be impossible for
a single program to correctly detect all viruses. To prove this we assume the existence

2Brain was the first malware known to use rootkit-like deception. Through a hooked interrupt handler
(Section 7.5), a user trying to read the boot sector would be shown a saved copy of the original boot sector.

190 Chapter 7. Malicious Software

of such a program and show that this assumption results in a logical contradiction (thus,
proof by contradiction). Suppose you claim to hold a virus detector program V that, given
any program P, can return a {TRUE, FALSE} result V (P) correctly answering: “Is P a
virus?” Using your program V , I build the following program instance P∗:

program P∗: if V(P∗) then exit, else infect-a-new-target

Now let’s see what happens if we run V on P∗. Note that P∗ is a fixed program (does not
change). Exactly one of two cases can occur, depending on whether V declares P∗ a virus:

CASE 1: V(P∗) is TRUE. That is, V declares that P∗ is a virus.
In this case, running P∗, it simply exits. So P∗ is actually not a virus.

CASE 2: V(P∗) is FALSE. That is, V declares that P∗ is not a virus.
In this case running P∗ will infect a new target. So P∗ is, in truth, a virus.

In both cases, your detector V fails to deliver on the claim of correctly identifying a virus.
Note this argument is independent of the details of V . Thus no such virus detector V can
exist—because its existence would result in this contradiction.

WHAT THIS MEANS. This proof sketch may seem like trickery, but it is indeed a
valid proof. Should we then give up trying to detect viruses in practice? No. Even if no
program can detect all viruses, the next question is whether useful programs can detect
many, or even some, viruses. That answer is yes—and thus the security industry’s history
of anti-virus products. But as detection techniques improve, the agents creating viruses
continue to develop new techniques, making detection increasingly difficult. This results
in an attacker-defender cat and mouse game of increasing complexity.

VIRUS DETECTION IN PRACTICE. A basic method to detect malware is to obtain
its object code, and then find malware signatures—relatively short byte-sequences that
uniquely identify it. Candidate signatures are regression-tested against extensive program
databases, to ensure uniqueness (to avoid mistakenly flagging a valid program as a virus).
Then, signatures for malware active in the field are stored in a dataset, and before any
executable is run by a user, an AV (anti-virus) program intervenes to test it against the
dataset using highly efficient pattern-matching algorithms. This blacklist-type mecha-
nism protects against known malware, but not new malware (Section 7.7 discusses such
“zero-days” and using system call hooking to intervene). Alternatively, one whitelist
mechanism to detect malware uses integrity-checker or change-detection programs (e.g.,
Tripwire, Chapter 2), using whitelists of known-good hashes of valid programs. An AV
program may bypass byte-matching on a to-be-run executable by use of such whitelists,
or if the executable has a valid digital signature of a trusted party. An extension of byte-
match signatures is the use of behavioral signatures; these aim to identify malware by
detecting sequences of actions (behaviors) pre-identified as suspicious (e.g., system calls,
attempts to disable certain programs, massive file deletions). Briefly pre-running target
executables in an emulated environment may be done to facilitate behavioral detection,
and so that malware self-decrypts (below), which then allows byte-pattern matching.

‡Exercise (Self-stopping worm). Look up, and summarize, the defining technical
characteristics of a self-stopping worm (hint: [33]).

7.3. Virus anti-detection and worm-spreading techniques 191

‡Exercise (Email worm-viruses). Summarize the technical details of these malware
incidents spread by email: a) ExploreZip, b) ILOVEYOU, c) Sircam, d) Bagle, e) MyDoom.

‡Exercise (Worm incidents). Summarize the technical details of these incidents, not-
ing any special lessons or “firsts” related to individual instances: i) Code Red and Code
Red II, ii) Nimda, iii) SoBig, iv) Sapphire/Slammer, v) Blaster, vi) Witty, vii) Sasser.

7.3 Virus anti-detection and worm-spreading techniques

This section discusses basic methods used by viruses to attempt to avoid being detected,
and some tactics used by network worms seeking to spread more rapidly.

ANTI-DETECTION STRATEGIES. A virus making no attempt to evade detection
consists of static cleartext code as in normal programs. Advanced viruses may use en-
cryption or self-variation (as explained next) in an attempt to evade being identified and
reverse-engineered. This gives one way to classify viruses, as follows (Fig. 7.2).

(a) Virus with encrypted body. A simple form of hiding uses fixed mappings (e.g., XOR

with a fixed string) or basic symmetric-key encryption using the same key across
instances. Execution requires first decrypting the virus body, by a small decryptor
portion that remains unmodified (which is thus easily detected by a string-matching
virus detector). To complicate detecting the modified body, the key, which is stored
in the decryptor to allow decryption, can be changed on each new infection.

(b) Polymorphic virus. These viruses have fixed bodies encrypted with per-instance keys
as above, but change their decryptor portions across infections by using a mutation
engine. A weak form stores a fixed pool of decryptors in the body, selecting one as
the actual decryptor in a new infection. In strong forms, a mini-compiler creates new
decryptor instances by combining functionally equivalent sets of machine instructions
(yielding combinatorially large numbers of variations); for example, machine instruc-
tions to subtract a register from itself, and to XOR with itself, produce the same result
of a zero in the register. Techniques are related to those used for non-malicious code
obfuscation and by optimizing compilers. After polymorphic virus decryption reveals
its static body, that remains detectable by string matching; virus detection tools thus
pre-run executables in emulators to detect in this way.

Virus	an)-detec)on	strategies.	(a)	Encrypted	body.	(b)	Polymorphic.	(c)	External	decryp)on	key.		(d)	Metamorphic.	

decryptor	
(sta)c)	

fixed	body	
(encrypted)	

decryptor	
(evolves	
each		

instance)	
fixed	body	
(encrypted)	

(d)	

en)re	
virus	

evolves	
per	

instance	
(not	

encrypted)	

(b)	(a)	 (c)	

external	
key	

decryptor	

fixed	body	
(encrypted)	

Figure 7.2: Virus anti-detection strategies. (a) Encrypted body. (b) Polymorphic virus,
including self-mutation of decryptor. (c) External decryption key. (d) Metamorphic virus.

192 Chapter 7. Malicious Software

(c) Virus with external decryption key. To complicate manual analysis of an infected file
that is captured, the decryption key is stored external to the virus itself. There are
many possibilities, e.g., in another file on the same host machine or on an external
machine. The key could be generated on the fly from host-specific data. It could
be retrieved from a networked device whose address is obtained through a level of
indirection—such as a search engine query, or a domain name lookup with a fre-
quently changed name-address mapping.

(d) Metamorphic virus. These use no encryption and thus have no decryptor portion.
Instead, on a per-infection basis, the virus rewrites its own code, mutating both its
body (infection and payload functionality) and the mutation engine itself. Elaborate
metamorphic viruses have carried source code and enlisted compiler tools on host
machines to aid their task.

The above strategies aim to hide the virus code itself. Other tactics aim to hide telltale
signs of infection, such as changes to filesystem attributes (e.g., file bytelength, time-
stamp), the location or existence of code, and the existence of running processes and the
resources they consume. Section 7.4 notes hiding techniques (associated with rootkits).

‡IMPORTANCE OF REVERSE ENGINEERING AS A SKILL. As malware authors use
various means of obfuscation and encryption to make it difficult to detect and remove mal-
ware, reverse engineering is an important skill for those in the anti-virus (anti-malware)
industry whose job it is to understand malware, identify it and provide tools that remove it.
Defensive experts use extensive knowledge of machine language, interactive debuggers,
disassemblers, decompilers and emulation tools.

AUTO-ROOTERS. An auto-rooter is a malicious program that scans (Chapter 11) for
vulnerable targets, then immediately executes a remote exploit on a network service (per
network worms) to obtain a root shell and/or install a rootkit, often with backdoor and as-
sociated botnet enrolment. Such tools have fully automated “point-and-click” interfaces
(requiring no technical expertise), and may accept as input a target address range. Vul-
nerable targets are automatically found based on platform and software (network services
hosted, and version) for which exploits are in hand. Defenses include: disabling unused
network services, updating software to patch the latest known vulnerabilities, use of fire-
walls (Chapter 10) and intrusion detection systems (Chapter 11) to block and/or detect
scans at gateways, and on-host anti-virus software to stop or detect intrusions.

LOCALIZED AND TOPOLOGICALLY-AWARE SCANNING. Worms spread by a dif-
ferent means than viruses. A worm’s universe of possible next-targets is the set of network
devices reachable from it—traditionally the full IPv4 address space, perhaps parts of IPv6.
A simple spreading strategy is to select as next-target a random IPv4 address; a subset will
be populated and vulnerable. The Code Red II worm (2001) used a localized-scanning
strategy, selecting a next-target IP address according to the following probabilities:

0.375: an address within its host machine’s class B address space (/16 subnet);

0.5: an address within its host machine’s class A network (/8 network);

0.125: an address chosen randomly from the entire IPv4 address space.

7.3. Virus anti-detection and worm-spreading techniques 193

The idea is that if topologically nearby machines are similarly vulnerable, targeting local
machines spreads malware faster once already inside a corporate network. This method,
those used by the Morris worm (below), and other topologically-aware scanning strate-
gies select next-target addresses by harvesting information on the current host machine,
including: email address lists, peer-to-peer lists, URLs on disk, and addresses in browser
bookmark and favorite site lists. These are all expected to be populated addresses.

FASTER WORM SPREADING. The following ideas have been brought to the commu-
nity’s attention as means to improve the speed at which worms may spread:

1. hit-list scanning. The time to infect all members of a vulnerable population is dom-
inated by early stages before a critical mass is built. Thus to accelerate the initial
spreading, lists are built of perhaps 10,000 hosts believed to be more vulnerable to
infection than randomly selected addresses—generated by stealthy scans (Chapter 11)
beforehand over a period of weeks or months. The first instance of a worm retains half
the list, passing the other half on to the next victim, and each proceeds likewise.

2. permutation scanning. To reduce contacting machines already infected, next-victim
scans are made according to a fixed ordering (permutation) of addresses. Each new
worm instance starts at a random place in the ordering; if a given worm instance learns
it has contacted a target already infected, the instance resets its own scanning to start
at a random place in the original ordering. A machine infected in the hit-list stage is
reset to start scanning after its own place in the ordering.

3. Internet-scale hit-lists. A list of (most) servers on the Internet can be pre-generated by
scanning tools. For a given worm that spreads by exploits that a particular web server
platform is vulnerable to, the addresses of all such servers can be pre-identified by
scanning (vs. a smaller hit-list above). In 2002, when this approach was first proposed,
there were 12.6 million servers on the Internet; a full uncompressed list of their IPv4
addresses (32 bits each) requires only 50 megabytes.

Using hit-list scanning to quickly seed a population (along with topologically-aware scan-
ning perhaps), then moving to permutation scanning to reduce re-contacting infected ma-
chines, and then Internet-scale hit-lists to reach pre-filtered vulnerable hosts directly, it
was estimated that a flash worm could spread to all vulnerable Internet hosts in just tens
of seconds, “so fast that no human-mediated counter-response is possible”.

THE 1988 INTERNET WORM. The Morris worm was the first widescale incident
demonstrating the power of network worms. It directly infected 10% of Internet devices
(only Sun 3 systems and VAX computers running some variants of BSD Unix) then in use,
but worm-related traffic overloaded networks and caused system crashes through resource
consumption—and thus widespread denial of service. This was despite no malicious pay-
load. Upon gaining a running process on a target machine, the initial base malware, like a
“grappling hook”, made network connections to download further components—not only
binaries but also source code to be compiled on the local target (for compatibility). It took
steps to hide itself. Four software artifacts exploited were:
1) a stack buffer overrun in fingerd (the Unix finger daemon, which accepts network

connections resulting from the finger command);

194 Chapter 7. Malicious Software

2) a backdoor-like debug command (that remained enabled) in the sendmail program;

3) a password-guessing attack using /etc/passwd, with discovered passwords then sup-
plied with commands sent to remote computers using rexec;3 and

4) abuse of trusted remote logins through /etc/hosts.equiv using rsh.4

This early “wake-up call” foreshadowed a wave of malicious worms in the early 2000s.
‡Exercise (Morris worm details). Explain the technical details of the exploits used by

the Morris worm, and the lessons learned (hint: [46], [56], [47, pages 19-23]). (Aside:
one resulting recovery procedure was for all users on affected systems to change their
passwords; this was in 1988. When a 2016 Yahoo! compromise affected over a billion
users, Yahoo! users were asked to do the same. Hmmm ... is this progress?)

7.4 Stealth: Trojan horses, backdoors, keyloggers, rootkits

Malware may use stealthy tactics to escape or delay detection. Stealthy malware of various
forms is named based on goals and methods used. We discuss a few types here.

Figure 7.3: Trojan horse (courtesy C. Landwehr, original photo, Mt. Olympus Park, WI)

TROJAN HORSE. By legend, the Trojan horse was an enormous wooden horse of-
fered as a gift to the city of Troy. Greek soldiers hid inside as it was rolled within the
city gates, emerging at nightfall to mount an attack. Today, software delivering malicious
functionality instead of, or in addition to, purported functionality—with the malicious part
possibly staying hidden—is called a Trojan horse or Trojan software. Some Trojans are
installed by trickery through fake updates—e.g., users are led to believe they are installing
critical updates for Java, video players such as Adobe Flash, or anti-virus software; other
Trojans accompany miscellaneous free applications such as screen savers repackaged with
accompanying malware. Trojans may perform benign actions while doing their evil in the
background; an executable greeting card delivered by email may play music and display

3rexec allows execution of shell commands on a remote computer, if a username-password is also sent.
4 Another Berkeley r-command, rsh, sends shell commands for execution by a shell on a remote computer.

7.4. Stealth: Trojan horses, backdoors, keyloggers, rootkits 195

graphics, while deleting files. The malicious functionality may become apparent immedi-
ately after installation, or might remain undetected for some time. If malware is silently
installed without end-user knowledge or actions, we tend not to call it a Trojan, reserving
this term for when the installation of software with extra functionality is “voluntarily”
accepted into a protected zone (albeit without knowledge of its full functionality).

BACKDOORS. A backdoor is a way to access a device bypassing normal entry points
and access control. It allows ongoing stealthy remote access to a machine, often by en-
abling a network service. A backdoor program contacted via a backdoor may be used for
malware installation and updates—including a RAT (Remote Access Trojan), a malicious
analogue of legitimate remote administration or remote desktop tools. Backdoors may
be stand-alone or embedded into legitimate programs—e.g., standard login interface code
may be modified to grant login access to a special-cased username without requiring a
password. A backdoor is often included in (provided by) Trojan software and rootkits.

ROOTKITS. A rootkit on a computing device is a set of software components that:

1) is surreptitiously installed and takes active measures to conceal its ongoing presence;

2) seeks to control or manipulate selected applications and/or host OS functions; and

3) facilitates some long-term additional malicious activity or functionality.

The techniques used to remain hidden and control other software functionality distinguish
rootkits from other malware. The end-goal, however, is facilitating malicious payload
functionality (e.g., surveillance, data theft, theft of CPU cycles). The main categories are
user mode and kernel mode rootkits (hypervisor rootkits are noted on page 208).

USER MODE VS. KERNEL MODE. The term rootkit originates from Unix systems,
where a superuser (user whose processes have UID 0) is often associated with username
root; a system hosting a malicious user process running with UID 0 is said to be rooted.
Recall that while a superuser process has highest privileges among user processes, it is still
a user process, with memory allocated in user space, i.e., non-kernel memory; user pro-
cesses do not have access to kernel memory, hardware, or privileged instructions. When
malware was (later) created that compromised kernel software, the same term rootkit was
re-used—creating ambiguity. To be clear: the mode bit is a hardware setting, which
changes from user mode to supervisor (kernel) mode, e.g., on executing the opcode that
invokes system calls; in contrast, superuser implies UID 0, a data value recognized by
OS software. A root (UID 0) process does not itself have kernel privileges; it can access
kernel resources only by a syscall invoking a kernel function. Thus a user mode rootkit
is a rootkit (per our opening definition) that runs in user space, typically with superuser
privileges (UID 0); a kernel mode rootkit runs in kernel space (i.e., kernel software was
compromised), with access to kernel resources and memory, and all processor instruc-
tions. Kernel mode rootkits are more powerful, and harder to detect and remove. Thus
the single-word term rootkit is an incomplete description in general, and if interpreted
literally as providing root-level privileges, understates the power of kernel rootkits.

ROOTKIT OVERVIEW, GOALS. In discussing rootkits, attacker refers to the deploy-
ing agent. While rootkits are malicious from the target machine’s viewpoint, some have,
from the deploying agent’s viewpoint, intent that is noble or serves public good, e.g.,

196 Chapter 7. Malicious Software

gathering intelligence by law enforcement, or observing intrusions on domain hosts, by
systems administrators using honeypots. Rootkits typically replace system code, modify
system data structures that do not impact core OS functions, alter/erase log files, and filter
results reported back to processes—to hide attacker processes, executables, and network
connections. Rootkit payloads may be any (typically stealthy) malware, including:

i) backdoor functionality (above) for ongoing remote access to a compromised ma-
chine. This may facilitate the machine being enlisted in a botnet (Section 7.7).

ii) software keylogger programs, which record and send user keystrokes to an attacker.
This involves hooking (Section 7.5) appropriate system calls. Information targets
include credit card details, username-password pairs for online banking, corporate
VPNs or enterprise accounts, and passwords for password-encrypted files.

iii) surveillance or session-logging software. Surreptitious remote use of device micro-
phones, webcams, and sensors (e.g., GPS for geolocation) allows eavesdropping even
when users are not active on their rooted device. When a user is active, their local
session (including mouse movements and keystrokes) can be reflected to a remote
attacker’s desktop, providing a continuous screen capture. Milder variations record
subsets of information (e.g., web sites visited, files accessed).

Rootkit success depends on: 1) installation, 2) remaining hidden, and 3) payload func-
tionality. As usual, the payload determines the ultimate damage. Malicious payloads with
functionality visible to end-users betray stealth, but rootkit-related features (including
stealthy installation, and difficult removal) may also be used by malware whose presence
becomes clear, e.g., ransomware (Section 7.7). The means by which rootkits are installed
(e.g., a buffer overflow in user-space or kernel software), are often considered separate
from the techniques used to remain hidden (the latter being defining characteristics). In
this sense, rootkits may be viewed as “post-intrusion” tools.

Exercise (Rootkits vs. Trojans). Explain what distinguishes rootkits from Trojans.
‡Exercise (lvtes, Linux kernel backdoors). a) Summarize the technical details of

the lvtes keylogger rootkit, which hides by modifying a module list. b) Give a technical
overview of Linux kernel backdoors. (Hint: [8].)

‡Exercise (Stuxnet 2010). Stuxnet, a worm with rootkit functionality, has been de-
scribed as the most elaborate malware developed as of the date it appeared. It targets only
a specific industrial control system, and severely damaged Iranian nuclear enrichment
centrifuges. Summarize the technical details of this worm-rootkit (hint: [17]).

‡Exercise (Sony rootkit 2005). Summarize the technical details and controversy of
the Sony rootkit, related to copy protection on Sony CDs (hint: [19]).

‡Exercise (Compiler trap door). An attacker backdoor in the implementation of the
OS login command grants an unauthorized username login access without entry of any
password. This can be done by modifying the (source code of the) compiler that com-
piles this system software, building special-case logic into the login executable when the
compiler creates it. However, this leaves visible evidence to anyone examining compiler
source code. Explain how the evidence can be removed by building functionality into the
compiler executable, to insert the backdoor into the login software and to re-introduce

7.5. Rootkit detail: installation, object modification, hijacking 197

this compiling capability into the compiler executable, even after this functionality is re-
moved from the compiler source code. (Hint: [63]. This is Thompson’s classic paper.)

‡Exercise (Memory isolation meltdown). Memory isolation is a basic protection.
Ideally, the memory of each user process is isolated from others, and kernel memory is
isolated from user memory. a) Explain how memory isolation is achieved on modern
commodity processors (hint: [31, Sect. 2.2]). b) Summarize how the Meltdown attack de-
feats memory isolation by combining a side-channel attack with out-of-order (i.e., early)
instruction execution (hint: [31]; this exploits hardware optimization, not software vul-
nerabilities). c) Discuss how memory isolation between user processes, and between user
and kernel space, relate to principle P5 (ISOLATED-COMPARTMENTS).

7.5 Rootkit detail: installation, object modification, hijacking

This section provides additional technical details on rootkits.
HIJACKING SYSTEM CALLS. User mode programs may not directly access kernel

memory. Applications access kernel resources by system calls (page 195 and Chapter 6),
most often through OS services and shared library utilities (running in user space) that
invoke the kernel services (running with kernel mode privileges). The service names are
resolved to function addresses through a service address table, e.g., a table of function
pointers (sometimes called a dispatch table). Various methods enable system call hijack-
ing. A kernel rootkit may alter entries in dispatch tables, to redirect calls to rootkit code,
which might call the legitimate code and then postprocess results (Fig. 7.4). Intercept-
ing calls in this way is known as hooking; the new handling code is called the hook. Such
hooking also has many legitimate uses, including by anti-virus software. A second hijack-
ing method overwrites the code implementing targeted system calls. A third alternative
does not hook individual call table entries, but instead replaces an entire table by changing
the address used by calling routines to find it, to that of a substitute table elsewhere.

Ch.7.	System	call	hijacking:	common	methods.		
(a)	Hooking	an	individual	system	call.	
(b)	Over-wriAng	individual	system	call.		
(c)	Hooking	the	enAre	syscall	table.		

syscall	dispatcher	
�	

applicaAon	

syscall	
table:	

xx	

...
	

�	
�	
�	

�	

syscall	#0	
#1	

#2	

#i
syscall	code	

(c)	

...
	

�	
�	
�	

�	

(a)	

(b)	

shared	library	

kernel	
user	space	

subsAtute	code	

subsAtute		
table	

Figure 7.4: System call hijacking. (a) Hooking an individual system call; the substitute
code (hook function) may do preprocessing, call the original syscall code (which returns
to the substitute), and finish with postprocessing. (b) Overwriting individual system call.
(c) Hooking the entire syscall table by using a substitute table.

198 Chapter 7. Malicious Software

‡WINDOWS FUNCTION HOOKING. On Windows systems, function pointer tables
commonly hooked in kernel and user space, respectively, are: SSDT (System Service
Dispatch Table) and IAT (Import Address Table). The addresses of functions in Windows
shared libraries (DLLs or dynamically linked libraries) are made available through the IAT,
the principal user-space dispatch table and thus a common target for user-space rootkits.
Aside: while syscall interfaces are well documented in Unix (and typically accessed via C
library wrapper functions), they are not openly documented on Windows—there, syscalls
are accessed via the NTAPI/Native API provided by wrappers in the ntdll.dll library,
and dispatched via SSDT.

INLINE HOOKING. An alternative to hijacking dispatch tables is inline hooking. It
involves detour patching, using detour and trampoline functions (Fig. 7.5). This allows
arbitrary-length preprocessing and postprocessing code around a target function. Dispatch
table hooking can be detected by a simple cross-check of table addresses; inline hooking
is not detected by that, but is visible by an integrity cross-check of the target function
(hashing the executable code, and comparing to a known-good hash).

KERNEL OBJECT MODIFICATION, PRUNING REPORTS. A rootkit may hide a
process, files or open network connections in two main ways:
a) direct kernel object modification (DKOM). Kernel data structures are directly altered,

e.g., removing rootkit-related objects from a list, to go unreported. A kernel rootkit,
having the ability to read and write kernel memory, may alter data structures meant for
exclusive use by the kernel. For example, the privilege of any process in the kernel’s
list of running processes may be escalated by setting its UID to 0. Other examples of
objects to modify include: the list of files in a directory, the loaded module list, the
scheduler list, and the process accounting list (e.g., showing CPU usage).

b) postprocessing results of system calls. When a call is made requesting a report, the
result can be pruned to remove rootkit-related processes and objects before it is re-
turned. This can be done by hooking, preprocessing and postprocessing results of the
legitimate system call (Figures 7.4, 7.5).

INSTALLING. Various means exist to install kernel rootkits or alter kernels.

Ch.7.	Inline	hooking.		

xx	

Original	

�	

CALL	TRGT	

Target	
func;on	

Detoured	

RET	

...	

...	

...	

CALL	TRGT	

RET	

...	

...	

...	

JMP	DTR	 RET	

preprocess	

JMP	TGT+x	
CALL	TRMP	
postprocess	

Target	
func;on	

Detour	
func;on	 Trampoline	

func;on	Calling	
func;on	

Calling	
func;on	

execu;on	path	execu;on	path	

instrn_T1	

instrn_T1	

instrn_T2	
instrn_T3	
instrn_T4	 instrn_T4	

instrn_T3	
instrn_T2	

Figure 7.5: Inline hooking, detour and trampoline. A trampoline replaces the overwritten
instruction, and enables the target function’s return to the detour for postprocessing.

7.5. Rootkit detail: installation, object modification, hijacking 199

1. Standard kernel module installation. A superuser may install a supposedly valid kernel
module (e.g., device driver) with Trojan rootkit functionality. Similarly, an attacker
may socially engineer a superuser to load a malicious kernel module (LKM, below).
A superuser cannot directly access kernel memory, but can load kernel modules.

2. Exploiting a vulnerability to kernel code—e.g., a buffer overflow in a kernel network
daemon, or parsing errors in code that alters kernel parameters.

3. Modifying the boot process mechanism. For example, a rogue boot loader might alter
the kernel after it is loaded, but before the kernel runs.

4. Modifying code or data swapped (paged) to disk. If kernel memory is swapped to disk,
and that memory is writable by user processes, kernel integrity may be modified on
reloading the swapped page. (This was done by Blue Pill, Section 7.9.)

5. Using interfaces to physical address space. For example, Direct Memory Access
(DMA) writes may be used to alter kernel memory, through hardware devices with
such access (e.g., video and sound cards, network cards, disk drives).

LOADABLE KERNEL MODULES. One method to install rootkits is through standard
tools that allow the introduction of OS kernel code. A loadable kernel module (LKM) is
executable code packaged as a component that can be added or removed from a running
kernel, to extend or retract kernel functionality (system calls and hardware drivers). Many
kernel rootkits are LKMs. Most commercial operating systems support some form of
dynamically loadable such kernel modules, and facilities to load and unload them—e.g.,
by specifying the module name at a command line interface. An LKM includes routines
to be called upon loading or unloading.

‡REVIEW: LINKING AND LOADING. Generating an executable suitable for loading
involves several steps. A compiler turns source code into machine code, resulting in a
binary (i.e., object) file. A linker combines one or more object files to create an executable
file (program image). A loader moves this from disk into the target machine’s main
memory, relocating addresses if necessary. Static linkers are compile-time tools; loaders
are run-time tools, typically included in an OS kernel. Loaders that include dynamic
linkers can load executables and link in shared libraries (DLLs on Windows).

‡Exercise (Modular vs. monolithic root, kernel). Modularity provided by a core ker-
nel with loadable modules and device drivers does not provide memory isolation between
different kernel software components, nor partition access to kernel resources. Kernel
compromise still grants malware control to read or write anything in kernel memory, if
the entire kernel operates in one privilege mode (vs. different hardware rings, Chapter 5).
In contrast, Linux capabilities (Chapter 6) partition superuser privileges into finer-grained
privileges, albeit all in user space. Discuss how these issues relate to design principles P5
(ISOLATED-COMPARTMENTS), P6 (LEAST-PRIVILEGE), P7 (MODULAR-DESIGN).

USER MODE ROOTKITS. On some systems including Windows, user mode rootkits
operate by intercepting, in the address space of user processes, resource enumeration
APIs. These are supported by OS functions that generate reports from secondary data
structures the OS builds to efficiently answer resource-related queries. Such a rootkit
filters out malware-related items before returning results. This is analogous to hooking

200 Chapter 7. Malicious Software

system calls in kernel space (without needing kernel privileges), but user mode rootkit
changes made to one application do not impact other user processes (alterations to shared
libraries will impact all user-space processes that use those libraries).

‡Exercise (User mode rootkit detection). It is easier to detect user mode rootkits than
kernel rootkits. Give a high-level explanation of how user mode rootkits can be detected
by a cross-view difference approach that compares the results returned by two API calls at
different levels. (Hint: [64], which also reports that by their measurements, back in 2005
over 90% of rootkit incidents reported in industry were user mode rootkits.)

‡Exercise (Keyjacking). DLL injection and API hooking are software techniques with
non-security uses, as well as in security defenses (e.g., anti-virus software) and attacks
(e.g., rootkit software middle-person attacks). Explain how DLL injection is a threat to
end-user private keys in client-side public-key infrastructure (hint: [34]).

‡PROTECTING SECRETS AND LOCAL DATA. The risk of client-side malware mo-
tivates encrypting locally stored data. Encrypted filesystems automatically encrypt data
stored to the filesystem, and decrypt data upon retrieval. To encrypt all data written to
disk storage, either software or hardware-supported disk encryption can be used.

‡Exercise (Encrypting data in RAM). Secrets such as passwords and cryptographic
keys that are in cleartext form in main memory (RAM) are subject to compromise. For
example, upon system crashes, RAM memory is often written to disk for recovery or
forensic purposes. (a) What can be done to address this concern? (b) If client-side mal-
ware scans RAM memory to find crypto keys, are they easily found? (Hint: [51]).

‡Exercise (Hardware storage for secrets). Being concerned about malware access
to secret keys, you decide to store secrets in a hardware security module (HSM), which
prevents operating system and application software from directly accessing secret keys.
Does this fully address your concern, or could malware running on a host misuse the
HSM? (Hint: look up the confused deputy problem.)

7.6 Drive-by downloads and droppers

MALWARE EXPLOITING BROWSER USE. Malware also exploits the rich functional
design of browser-server interaction. Web pages are documents written in HTML, a tag-
based markup language indicating how pages on web servers should be displayed on user
devices. To enable powerful web applications such as interactive maps, HTML supports
many types of embedded content beyond static data and images. This includes sequences
of instructions in scripting languages such as JavaScript.5 Such active content—small
program snippets that the browser executes as it displays a web page—runs on the user
device. The browser’s job is to (process and) display the web pages it receives, so in this
sense, the execution of content embedded in the page is “authorized” simply by visiting
a web page, even if the page includes malicious content embedded through actions of an
attacker. Through a combination of a browser-side vulnerability,6 and injection of a few

5Older examples of active content (Chapter 9) include Flash, ActiveX controls, and Java applets.
6For example, using heap spraying (Chapter 6) combined with script injection attacks (Chapter 9).

7.6. Drive-by downloads and droppers 201

Drive-by	download	involving	browser	redirec3on.		A	browser	visi3ng	an	original	site	(1)	is	o:en	redirected	(2)	to	
a	distribu3on	site	that	causes	silent	download	of	malware	(3),	e.g.,	possible	due	to	browser	vulnerabili3es.		
The	redirec3on	(2)	may	involve	several	redirect	hops	through	intermediate	sites.	

(2)	client		
browser	

(1)	

(3)	

landing	
page	

distribu3on	
page	

Figure 7.6: Drive-by download involving browser redirection. A browser visiting an
original site (1) may be redirected (2) to a distribution site that causes silent download of
malware (3), e.g., possible due to browser vulnerabilities. The redirection (2) may involve
several redirect hops through intermediate sites. One defense involves detection by auto-
mated analysis (using downloader graphs, Section 7.9) comparing multi-step downloads
that result from an initial download, to typical benign download patterns.

lines of script into a web page via a compromised or exploited server application, simply
visiting a web page can result in binary executable malware being silently downloaded
and run on the user device. This is called a drive-by download (Fig. 7.6).

MEANS OF DRIVE-BY EXPLOITATION. Drive-by downloads use several technical
means as now discussed. Questions to help our understanding are: how do malicious
scripts get embedded into web pages, how are malicious binaries downloaded, and why is
this invisible to users? Malicious scripts are embedded from various sources, such as:

1. web page ads (often provided through several levels of third parties);

2. web widgets (small third-party apps executed within a page, e.g., weather updates);

3. user-provided content reflected to others via sites (e.g., web forums) soliciting input;

4. malicious parameters as part of links (URLs) received in HTML email.

A short script can redirect a browser to load a page from an attacker site, with that page
redirecting to a site that downloads binaries to the user device. Silent downloading and
running of a binary should not be possible, but often is, through scripts that exploit
browser vulnerabilities—most vulnerabilities eventually get fixed, but the pool is deep,
attackers are creative, and software is always evolving. Note that the legitimate server ini-
tially visited is not involved in the latter steps (Fig. 7.6). Redirects generally go unnoticed,
being frequent and rapid in legitimate browsing, and injected content is easy to hide, e.g.,
using invisible components like a zero-pixel iframe.

DEPLOYMENT MEANS VS. MALWARE CATEGORY. Drive-by downloads can in-
stall various types of malware—including keyloggers, backdoors, and rootkits—and may
result in zombies being recruited into botnets. Rather than a separate malware category,
one may view drive-by downloads as a deployment means or spreading method that ex-
ploits features of browser-server ecosystems. As a distinguishing spreading characteristic
here, the victim devices visit a compromised web site in a pull model. (Traditional worms
spread in a push model, with a compromised source initiating contact with next-victims.)

DROPPERS (DOWNLOADERS). A dropper is malware that installs (on a victim host)
other malware that contains a malicious payload. If this involves downloading additional
malware pieces, the dropper may be called a downloader. Droppers may install backdoors

202 Chapter 7. Malicious Software

(page 195) to aid installation and update. The payload may initiate network communica-
tions to a malware source or control center, or await contact. The initial malware installed,
or a software package including both the dropper and its payload, may be called the egg.
The dropper itself may arrive by any means including virus, worm, drive-by download, or
user-installed Trojan horse software.

Example (Babylonia dropper). One of the first widely spread malware programs with
dropper functionality was the Babylonia (1999) virus. After installation, it downloaded
additional files to execute. Being non-malicious, it gained little notoriety, but its function-
ality moved the world a step closer to botnets (Section 7.7).

7.7 Ransomware, botnets and other beasts

Ransomware is malware with a specific motive: to extort users. This typically involves
compromise of a host, and communication between the compromised device and a remote
computer controlled by attackers. Attackers often communicate with and control large
numbers of compromised devices, in which case the collection is called a botnet. We
discuss these and a few other forms of malware in this section.

RANSOMWARE THAT ENCRYPTS FILES. A powerful type of malware is that which
prevents access to files (file lockers) by encryption. It encrypts user data files, then asks
users to pay a sum of money in return for a decryption key (e.g., from a remote site) that
allows file recovery. Payment is demanded in hard-to-trace, non-reversible forms such
as pre-paid cash vouchers or digital currencies; the dramatic increase in ransomware in
parallel with Bitcoin is notable. Removal of the malware itself does not solve the problem:
encrypted files remain unavailable. Ransomware may be deployed by any means used
for other malware, including Trojan software installed by users unwittingly or via social
engineering. Best practice defenses include regular backup of all data files.

DETAILS: ASYMMETRIC FILE LOCKING. If such ransomware uses public-key
cryptography, the malware need not retain a decryption key discoverable by the victim.
Consider a fixed ransomware (public, private) key pair (er,dr). The malware, hard-coded
with public er, creates a per-victim random symmetric key k; uses k to symmetrically
encrypt victim files; uses er to public-key encrypt k as ciphertext C = Eer(k); then deletes
from memory k and the plaintext files. A payment demand message is displayed, showing
C and contact details. If C is returned with payment, the malware agent uses its externally
held dr to decrypt C recovering k, which is then made available to the victim.

RANSOMWARE (NON-ENCRYPTING). Other variations of file lockers make files un-
available not through encryption but rather by standard access control means, or threaten
to erase user files or reformat disks, or (falsely) claim to have encrypted files. Other non-
encrypting ransomware may deny user access to OS functionality until a ransom is paid
(again, e.g., in bitcoin), and disable OS debug modes (e.g., safe mode or safe boot). In
general, ransomware may involve rootkit functionality to make removal difficult.

‡Example (WannaCrypt 2017). WannaCry ransomware (a cryptoworm) reportedly
infected over 200,000 Windows computers across 150 countries. It generated a 2048-bit

7.7. Ransomware, botnets and other beasts 203

Ch.7.	WannaCry	file-locking	ransomware.		See	hybrid	encryp;on	(Chapter	2).		
c	is	the	AES	encryp;on	of	the	original	file.		A	header	prefix	iden;fies	the	file	format	
(“WANACRY!”	ASCII	iden;fier,	AES	keylength).	A	content	prefix	iden;fies	the	encrypted	
format,	including	a	file	type	and	byte-length	for	original	file.		The	RSA	master	public	key	
is	(from	examining	it	online)	2048	bits	also.	

Eev(k)	

k			

public	key	ev	
c	=	Ek(m)	

k	
c	

(encrypted	
original	
file)	

per-file	random	
128-bit	key	

encrypted	
AES	key	

m				(original	file)	

(as	data)	

header1	

header2	

RSA	
encrypt	

AES	
encrypt	

Ransomware	master	public	key	er	used	to	encrypt		dv	to	Eer(dv)		
Per-vic;m	(public,	private)	key	pair	(ev	,	dv)	generated	on	vic;m	host	

Eer(dv),		
payment	

dv	

using	dr	,	recovers	dv	

	Vic;m	host		

	Ransom	master	(er	,	dr)		

Figure 7.7: WannaCry file-locking ransomware: file structure. Each data file is AES-
encrypted under a different key k. An encrypted file’s header1 includes an identifying
ASCII string WANACRY! and AES keylength; header2 provides a file type and byte-length
of the original file. Compare to hybrid encryption, Chapter 2.

RSA (public, private) key pair (ev,dv) per victim. For each file to be encrypted, a random
128-bit AES key k was generated and its public-key encryption Eev(k) put in a file header
followed by the ciphertext content. A hard-coded 2048-bit ransomware master public key
er was used to encrypt one copy of the victim private key as Cv = Eer(dv), in place of C
(above). This facilitates independent keys k for each file, whereas using a common key k
across all files exposes k to recovery if file locking is detected before all files are locked.

‡Exercise (Ransomware incidents). Summarize major technical details of the follow-
ing ransomware instances: a) Gpcode, b) CryptoLocker, c) CryptoWall, d) Locky.

BOTNETS AND ZOMBIES. A common goal of malware is to obtain an OS command
shell interface and then arrange instructions sent to/from an external source. A payload
delivering this functionality is called shellcode (Chapter 6). A computer that has been
compromised by malware and can be remotely controlled, or that reports back in to a
controlling network (e.g., with collected information), is called a bot (robot) or zombie,
the latter deriving from bad movies. A coordinated network of such machines is called
a botnet. The individual controlling it is the botnet herder. Botnets exceeding 100,000
machines have been observed. Owners of machines on which zombie malware runs are
often unaware of this state of compromise (so perhaps the owners are the real zombies).

BOTNETS AND CRIME. Botnets play a big role in cybercrime. They provide critical
mass and economy of scale to attackers. Zombies are instructed to spread further mal-
ware (increasing botnet size), carry out distributed denial of service attacks (Chapter 11),
execute spam campaigns, and install keyloggers to collect data for credit cards and access
to online bank accounts. Spam may generate revenue through sales (e.g., of pharmaceu-
ticals), drive users to malicious web sites, and spread ransomware. Botnets are rented to
other attackers for similar purposes. In the early 2000s, when the compromise situation
was particularly bad on certain commodity operating systems, it was only half-jokingly
said that all PCs were expected to serve two years of military duty in a botnet.

BOTNET COMMUNICATION STRUCTURES AND TACTICS. A simple botnet com-
mand and control architecture involves a central administrative server in a client-server

204 Chapter 7. Malicious Software

model. Initially, control communications were over (Internet Relay Chat) IRC channels,
allowing the herder to send one-to-many commands. Such centralized systems have a sin-
gle point of failure—the central node (or a centralized communication channel), if found,
can be shut down. The channel is obvious if zombies are coded to contact a fixed IRC
server, port and channel; using a set of such fixed channels brings only marginal improve-
ment. More advanced botnets use peer-to-peer communications, coordinating over any
suitable network protocol (including HTTPS); or use a multi-tiered communication hier-
archy in which the bot herder at the top is insulated from the zombies at the bottom by
layers of intermediate or proxy communications nodes. For zombie machines that receive
control information (or malware updates) by connecting to a fixed URL, one creative tac-
tic used by bot herders is to arrange the normal DNS resolution process to resolve the URL
to different IP addresses after relatively short periods of time. Such tactics complicate the
reverse engineering and shutdown of botnets.

‡Exercise (Torpig 2006). The Torpig botnet involves use of a rootkit (Mebroot) to
replace master boot records. In 2009, it was studied in detail by a research team that
seized control of it for 10 days. Summarize technical details of this botnet (hint: [60]).

‡Exercise (Zeus 2007). Summarize technical details of Zeus bank Trojan/credential-
stealing malware. (Hint: [4], [1]. Its control structure has evolved along with deployment
related to keylogging, ransomware and botnets; source code became available in 2011.)

‡Exercise (Other botnets). Summarize technical details of these botnets (others are in
Chapter 11): a) Storm, b) Conficker, c) Koobface, d) BredoLab, e) ZeroAccess.

‡Exercise (Botnet motivation). Discuss early motivations for botnets (hint: [5]).
ZERO-DAY EXPLOITS. A zero-day exploit (zero-day) is an attack taking advantage

of a software vulnerability that is unknown to developers of the target software, the users,
and the informed public. The terminology derives from an implied timeline—the day
a vulnerability becomes known is the first day, and the attack precedes that. Zero-days
thus have free reign for a period of time; to stop them requires that they be detected,
understood, countermeasures be made available, and then widely deployed. In many non-
zero-day attacks, software vulnerabilities are known, exploits have been seen “in the wild”
(in the real world, beyond research labs), software fixes and updates are available, and yet
for various reasons the fixes remain undeployed. The situation is worse with zero-days—
the fixes are still a few steps from even being available. The big deal about zero-days is
the element of surprise and extra time this buys attackers.

LOGIC BOMBS. A logic bomb is a sequence of instructions, often hosted in a larger
program, that takes malicious action under a specific (set of) condition(s), e.g., when a
particular user logs in, or a specific account is deactivated (such as when an employee is
fired). If the condition is a specific date, it may be called a time bomb. In pseudo-code:

if trigger condition true() then run payload()

This same construct was in our pseudo-code descriptions of viruses and worms. The term
logic bomb simply emphasizes that a malicious payload is conditional, putting the bad
outcome under programmable control. From this viewpoint, essentially all malware is
a form of logic bomb (often with default trigger condition TRUE). Thus logic bombs are

7.8. Categorizing malware 205

spread by any means that spreads malware (e.g., viruses, worms, drive-by downloads).
‡RABBITS. If a new category of malware was defined for each unique combination of

features, the list would be long, with a zoo of strange animals as in the Dr. Seuss children’s
book I Wish That I Had Duck Feet (1965). While generally unimportant in practice,
some remain useful to mention, to give an idea of the wide spectrum of possibilities, or
simply to be aware of terminology. For example, the term rabbit is sometimes used to
describe a type of virus that rapidly replicates to consume memory and/or CPU resources
to reduce system performance on a host; others have used the same term to refer to a type
of worm that “hops” between machines, removing itself from the earlier machine after
having found a new host—so it replicates, but without population growth.

‡EASTER EGGS. While not malware, but of related interest, an Easter egg is a harm-
less Trojan—a special feature, credit, or bonus content hidden in a typically large program,
accessed through some non-standard means, special keystroke sequence or codeword.

‡Exercise (Easter eggs: history). Look up and summarize the origin of the term
Easter egg in the context of computer programs. Give three historical examples.

7.8 Categorizing malware

This section summarizes properties that distinguish malware categories. First, we revisit
use of social engineering to trick users into installing malware, and related email abuses.

SOCIAL ENGINEERING AND USER-ENABLED INSTALLS. In contrast to silently
installed malware, social engineering attacks may trick users into one-step download,
installation and execution of malware. As an early instance, the (non-malicious) email
worm-virus Happy99 (1999) convinced users to run an attached executable. Some op-
erating systems hide filename extensions (for user-friendly interfaces), but this aids such
attacks by removing one of the few visible indicators to users, e.g., extensions such as
.exe (executable). Note also: on a typical OS, double-clicking a file results in program
execution—either running the file if it is itself executable, or for a data file, running the
executable set by default as the associated program to open it—in both cases, transferring
the user process’ execution privileges. This is a form of user-enabled execution.

Example (HTML email and preview panes). Email began as text only. Over time,
email clients came to support embedded HTML, allowing rich formatting and embed-
ded images. Modern HTML supports embedded scripting, which then enabled (upon
displaying email) execution of embedded scripts (e.g., JavaScript), including malware
execution. The error was failure to foresee this rich functionality being exploited when
combined with email’s open design, which allows anyone to send email to a recipient
with a known email address. Among other email clients that initially ran embedded
JavaScript within HTML email was Microsoft Outlook. Simply viewing (“opening”) an
email message would run any embedded script, which might exploit available means to
load additional resources to execute malicious programs. This was exacerbated by email
preview panes (auto-preview), which display a portion of an email without a user explic-
itly “opening” the email; rendering this preview content would also run embedded scripts.

206 Chapter 7. Malicious Software

Today, essentially all email clients disable running of embedded scripts; embedded im-
ages (which commonly retrieve resources from external sites) are also no longer loaded
by default, instead requiring an explicit click of a “load external images” button.

Example (.zip files). Filename extensions such as .zip, .rar and .sfx indicate
a package of one or more compressed files. These may be self-extracting executables,
containing within them scripts to uncompress, unpack, save files to disk, and begin an
execution, without use of external utilities. This process may be supported depending on
OS and host conventions, triggered by a double-click. If the package contains malware,
on-host anti-virus (anti-malware) tools may provide protection if the unpacked software is
recognizable as malicious. Few users appreciate what their double-click authorizes, and
little reliable information is easily available on the scripts and executables to be executed.

Exercise (Clicking to execute). If a user interface hides filename extensions, and there
is an email attachment prettyPicture.jpg.exe, what filename will the user see?

‡Exercise (Socially engineering malware installation). Consider web-based malware
installation through social engineering. Summarize tactics for: a) gaining user attention;
and (b) deception and persuasion. (Hint: [41].)

‡Exercise (Design principles). Consider security design principles P1 (SIMPLICITY-
AND-NECESSITY), P2 (SAFE-DEFAULTS), P5 (ISOLATED-COMPARTMENTS), P6 (LEAST-
PRIVILEGE), P10 (LEAST-SURPRISE). Discuss how they relate to malware in the above
examples of: a) HTML email and auto-preview; and (b) self-extracting executables.

MALWARE CLASSIFICATION BY OBJECTIVES. One way to categorize malware is
to consider its underlying goals. These include the following.
1. Damage to host and its data. The goal may be intentional destruction of data, or

disrupting the host machine. Examples include crashing the operating system, and
deletion, corruption, or modification of files or entire disks.

2. Data theft. Documents stolen may be corporate strategy files, intellectual property,
credit card details, or personal data. Credentials stolen, e.g., account passwords or
crypto keys, may allow fraudulent account login, including to online banking or enter-
prise accounts; or be sold en masse, to others on underground or non-public networks
(e.g., darknets). Stolen information is sent to attacker-controlled computers.

3. Direct financial gain. Direct credit card risks include deceiving users into purchasing
unneeded online goods such as fake anti-virus software. Users may also be extorted,
as in the case of ransomware. Malware may generate revenue by being rented out,
e.g., on darknets (above).

4. Ongoing surveillance. User voice, camera video, and screen actions may be recorded
surreptitiously, by microphones and web cameras on mobile and desktop devices, or
by software that records web sites visited, keystrokes and mouse movements.

5. Spread of malware. Compromised machines may be used to further spread malware.
6. Control of resources. Once a machine is compromised, code may be installed for

later execution or backdoor access. Remote use is made of computing cycles and
communication resources for purposes including botnet service, bitcoin mining, as a
host server for phishing, or as a stepping stone for further attacks (reducing risk that

7.9. ‡End notes and further reading 207

Category name Property (blank denotes: no)
BREEDS† HOSTED STEALTHY VECTOR

virus 3 3 U

worm 3 N

Trojan horse 3 3 E or S

backdoor maybe 3 T or S

rootkit, keylogger 3 T or S

ransomware T

drive-by download H 3 S

Table 7.2: Malware categories and properties. Botnets (unlisted), rather than a separate
malware category, control other (zombie) malware. Codes for infection vector: U (user-
enabled), N (network service vulnerability), E (social engineering), T (intruder, including
when already resident malware or dropper installs further malware), S (insider, e.g., devel-
oper, administrator, compromised web site hosting malware). †Any category that breeds
may spread a dropper (Section 7.6) for other types, e.g., rootkits, ransomware. HThe
number of download sites does not increase, but site visits propagate malware.

an attack is traced back to the originating agent). Zombies enlisted to send spam are
called spambots; those in a DDoS botnet are DDoS zombies.

MALWARE CLASSIFICATION BY TECHNICAL PROPERTIES. Another way to catego-
rize malware is by technical characteristics. The following questions guide us.

a) Does it breed (self-replicate)? Note that a drive-by download web site causes malware
to spread, but the site itself does not self-replicate. Similarly, Trojans and rootkits
may spread by various means, but such means are typically independent of the core
functionality that characterizes them.

b) Does it require a host program, as a parasite does?

c) Is it covert (stealthy), taking measures to evade detection and hide its functionality?

d) By what vector does infection occur? Automatically over networks or with user help?
If the latter, does it involve social engineering to persuade users to take an action
triggering installation (even if as simple as a mouseclick on some user interfaces)?

e) Does it enlist the aid of an insider (with privileges beyond that of an external party)?

f) Is it transient (e.g., active content in HTML pages) or persistent (e.g., on startup)?

Table 7.2 summarizes many of these issues, to close the chapter.

7.9 ‡End notes and further reading

For malware, Szor [62] is recommended for in-depth discussion, and Aycock [3] for a
concise introduction. Nachenberg [40] gives an overview of virus detection in practice.
Curry’s Unix security book [12] opens with a summary of early malware incidents. Den-
ning’s early collection [13] on malware includes a virus primer by Spafford [57] and an

208 Chapter 7. Malicious Software

overview by Cohen [9]. Our non-existence proof (Section 7.2) is from Cohen’s book [10]
based on one-day short courses. Ludwig’s earlier book [32] includes assembler, with a
free online electronic edition. See Duff [15] for early Unix viruses (cf. McIlroy [36]).
Other sources of information about malware include the U.S. NVD (National Vulnerabil-
ity Database) [42], the related CVE list (Common Vulnerabilities and Exposures) [38], the
Common Weakness Enumeration (CWE) dictionary of software weakness types [39], and
the SecurityFocus vulnerability database [50]. The industry-led Common Vulnerability
Scoring System (CVSS) rates the severity of security vulnerabilities.

Kong [28] gives details on developing Unix kernel rootkits, with focus on maintaining
(rather than developing exploits to gain) root access; for Windows kernel rootkits, see
Hoglund [20] and Kasslin [24]. The Shellcoder’s Handbook [2] details techniques for
running attacker-chosen code on victim machines, noting “The bad guys already know
this stuff; the network-auditing, software-writing, and network-managing public should
know it too”; similarly see Stuttard [61] and McClure [35]. Many of these attacks exploit
the mixing of code and data, including to manipulate code indirectly (vs. overwriting code
pointers to alter control flow directly). For greater focus on the defender, see Skoudis and
Zeltser [55], Skoudis and Liston [54], and (emphasizing reverse engineering) Peikari [43].
Tracking an intruder differs from addressing malware—see Stoll [59].

Staniford [58] analyzes the spread of worms (e.g., Code Red, Nimda) and ideas for
flash worms. See Hunt [22] for the Detour tool, DLL interception (benign) and trampo-
lines to instrument and functionally extend Windows binaries. For a gentle introduction
to user mode and kernel rootkit techniques and detection, see Garcia [6]. To detect user
mode rootkits, see Wang [64]. Jaeger [23] discusses hardening kernels against rootkit-
related malware that abuses standard means to modify kernel code. For hardware-based
virtual machines (HVMs), virtual machine monitors and hypervisor rootkits (including
discussion of Blue Pill [48]), see SubVirt [27] and Desnos [14]. For drive-by downloads
see Provos [44, 45]. For related studies of droppers and detecting them via analysis of
downloader graphs, see Kwon [30]. For the underground economy business model of dis-
tributing malware on a pay-per-install basis and the resulting distribution structure, see
Caballero [7]. In 1996, Young [65, 66] explained how public-key cryptography strength-
ened a reversible denial of service attack called cryptovirology (now ransomware). For
defenses against file-encrypting ransomware, see Scaife [49] and UNVEIL [25]; for static
analysis of WannaCry, see Hsiao [21]. On botnets aside from the exercises in Section
7.7, see Cooke [11] for an introduction, Shin [53] for Conficker, and BotMiner [18] for
detection.

Code signing of applications and OS code, using dedicated code signing certificates, is
a defense against running unauthorized programs. For an overview of Windows Authenti-
code, requirements for signing user and kernel mode drivers, and abuses, see Kotzias [29]
and Kim [26]. For a history of Linux kernel module signing, see Shapiro [52]. Meijer [37]
explains severe vulnerabilities in commodity hardware disk encryption.

References

[1] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos. Highly resilient peer-to-peer
botnets are here: An analysis of Gameover Zeus. In Malicious and Unwanted Software (MALWARE),
pages 116–123, 2013.

[2] C. Anley, J. Heasman, F. Lindner, and G. Richarte. The Shellcoder’s Handbook: Discovering and
Exploiting Security Holes (2nd edition). Wiley, 2007.

[3] J. Aycock. Computer Viruses and Malware. Springer Science+Business Media, 2006.

[4] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. M. Youssef, M. Debbabi, and L. Wang. On the
analysis of the Zeus botnet crimeware toolkit. In Privacy, Security and Trust (PST), pages 31–38, 2010.

[5] D. Bradbury. The metamorphosis of malware writers. Computers & Security, 25(2):89–90, 2006.

[6] P. Bravo and D. F. Garcia. Rootkits Survey: A concealment story. Manuscript, 2009, https://
yandroskaos.github.io/files/survey.pdf.

[7] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring pay-per-install: The commoditization of
malware distribution. In USENIX Security, 2011. See also K. Thomas et al., USENIX Security, 2016.

[8] A. Chakrabarti. An introduction to Linux kernel backdoors. The Hitchhiker’s World, Issue #9, 2004.
https://www.infosecwriters.com/HHWorld/hh9/lvtes.txt.

[9] F. Cohen. Implications of computer viruses and current methods of defense. In [13] as Article 22,
pages 381–406, 1990. Updates an earlier version in Computers and Security, 1988.

[10] F. B. Cohen. A Short Course on Computer Viruses (2nd edition). John Wiley, 1994.

[11] E. Cooke and F. Jahanian. The zombie roundup: Understanding, detecting, and disrupting botnets. In
Steps to Reducing Unwanted Traffic on the Internet (SRUTI), 2005.

[12] D. A. Curry. UNIX System Security: A Guide for Users and System Administrators. Addison-Wesley,
1992.

[13] P. J. Denning, editor. Computers Under Attack: Intruders, Worms, and Viruses. Addison-Wesley, 1990.
Edited collection (classic papers, articles of historic or tutorial value).

[14] A. Desnos, E. Filiol, and I. Lefou. Detecting (and creating!) an HVM rootkit (aka BluePill-like). J.
Computer Virology, 7(1):23–49, 2011.

[15] T. Duff. Experience with viruses on UNIX systems. Computing Systems, 2(2):155–171, 1989.

[16] M. W. Eichin and J. A. Rochlis. With microscope and tweezers: An analysis of the Internet virus of
November 1988. In IEEE Symp. Security and Privacy, pages 326–343, 1989.

[17] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet Dossier. Report, ver. 1.4, 69 pages, Symantec
Security Response, Cupertino, CA, February 2011.

[18] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering analysis of network traffic for protocol-
and structure-independent botnet detection. In USENIX Security, pages 139–154, 2008.

[19] J. A. Halderman and E. W. Felten. Lessons from the Sony CD DRM episode. In USENIX Security,
2006.

209

https://yandroskaos.github.io/files/survey.pdf
https://yandroskaos.github.io/files/survey.pdf
https://www.infosecwriters.com/HHWorld/hh9/lvtes.txt

210 References

[20] G. Hoglund and J. Butler. Rootkits: Subverting the Windows Kernel. Addison-Wesley, 2005.

[21] S.-C. Hsiao and D.-Y. Kao. The static analysis of WannaCry ransomware. In Int’l Conf. Adv. Comm.
Technology (ICACT), pages 153–158, 2018.

[22] G. Hunt and D. Brubacher. Detours: Binary interception of Win32 functions. In 3rd USENIX Windows
NT Symp., 1999.

[23] T. Jaeger, P. van Oorschot, and G. Wurster. Countering unauthorized code execution on commodity
kernels: A survey of common interfaces allowing kernel code modification. Computers & Security,
30(8):571–579, 2011.

[24] K. Kasslin, M. Ståhlberg, S. Larvala, and A. Tikkanen. Hide’n seek revisited – full stealth is back. In
Virus Bulletin Conf. (VB), pages 147–154, 2005.

[25] A. Kharraz, S. Arshad, C. Mulliner, W. K. Robertson, and E. Kirda. UNVEIL: A large-scale, automated
approach to detecting ransomware. In USENIX Security, pages 757–772, 2016.

[26] D. Kim, B. J. Kwon, and T. Dumitras. Certified malware: Measuring breaches of trust in the Windows
code-signing PKI. In ACM Comp. & Comm. Security (CCS), pages 1435–1448, 2017.

[27] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R. Lorch. SubVirt: Implementing
malware with virtual machines. In IEEE Symp. Security and Privacy, pages 314–327, 2006.

[28] J. Kong. Designing BSD Rootkits: An Introduction to Kernel Hacking. No Starch Press, 2007.

[29] P. Kotzias, S. Matic, R. Rivera, and J. Caballero. Certified PUP: Abuse in Authenticode code signing.
In ACM Comp. & Comm. Security (CCS), pages 465–478, 2015.

[30] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitras. The dropper effect: Insights into malware
distribution with downloader graph analytics. In ACM Comp. & Comm. Security (CCS), 2015.

[31] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Reading kernel memory from user space. In
USENIX Security, pages 973–990, 2018. See also “Spectre Attacks”, Kocher et al., IEEE Symp. 2019.

[32] M. Ludwig. The Little Black Book of Computer Viruses. American Eagle Publications, 1990. A rela-
tively early exposition on programming computer viruses, with complete virus code; the 1996 electronic
edition was made available free online.

[33] J. Ma, G. M. Voelker, and S. Savage. Self-stopping worms. In ACM Workshop on Rapid Malcode
(WORM), pages 12–21, 2005.

[34] J. Marchesini, S. W. Smith, and M. Zhao. Keyjacking: The surprising insecurity of client-side SSL.
Computers & Security, 24(2):109–123, 2005.

[35] S. McClure, J. Scambray, and G. Kurtz. Hacking Exposed 6: Network Security Secrets and Solutions
(6th edition). McGraw-Hill, 2009.

[36] M. D. McIlroy. Virology 101. Computing Systems, 2(2):173–181, 1989.

[37] C. Meijer and B. van Gastel. Self-encrypting deception: Weaknesses in the encryption of solid state
drives. In IEEE Symp. Security and Privacy, 2019.

[38] Mitre Corp. CVE–Common Vulnerabilities and Exposures. http://cve.mitre.org/cve/index.
html.

[39] Mitre Corp. CWE–Common Weakness Enumeration: A Community-Developed Dictionary of Software
Weakness Types. http://cwe.mitre.org.

[40] C. Nachenberg. Computer virus-antivirus coevolution. Comm. ACM, 40(1):46–51, 1997.

[41] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad. Towards measuring and mitigating social
engineering software download attacks. In USENIX Security, 2016.

[42] NIST. National Vulnerability Database. U.S. Dept. of Commerce. https://nvd.nist.gov/.

[43] C. Peikari and A. Chuvakin. Security Warrior. O’Reilly Media, 2004.

http://cve.mitre.org/cve/index.html
http://cve.mitre.org/cve/index.html
http://cwe.mitre.org
https://nvd.nist.gov/

References 211

[44] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your iFRAMEs point to us. In USENIX
Security, 2008.

[45] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The ghost in the browser:
Analysis of web-based malware. In USENIX HotBots, 2007.

[46] J. A. Rochlis and M. W. Eichin. With microscope and tweezers: The Worm from MIT’s perspective.
Comm. ACM, 32(6):689–698, 1989. Reprinted as [13, Article 11]; see also more technical paper [16].

[47] A. D. Rubin. White-Hat Security Arsenal. Addison-Wesley, 2001.

[48] J. Rutkowska. Subverting Vista kernel for fun and profit. Blackhat talk, 2006. http://blackhat.
com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf.

[49] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler. CryptoLock (and Drop It): Stopping ransomware
attacks on user data. In IEEE Int’l Conf. Distributed Computing Systems, pages 303–312, 2016.

[50] SecurityFocus. Vulnerability Database. http://www.securityfocus.com/vulnerabilities,
Symantec.

[51] A. Shamir and N. van Someren. Playing “hide and seek” with stored keys. In Financial Crypto (FC),
pages 118–124, 1999. Springer LNCS 1648.

[52] R. Shapiro. A History of Linux Kernel Module Signing. https://cs.dartmouth.edu/˜bx/blog/
2015/10/02/a-history-of-linux-kernel-module-signing.html, 2015 (Shmoocon 2014 talk).

[53] S. Shin and G. Gu. Conficker and beyond: A large-scale empirical study. In Annual Computer Security
Applications Conf. (ACSAC), pages 151–160, 2010. Journal version: IEEE TIFS 2012.

[54] E. Skoudis and T. Liston. Counter Hack Reloaded: A Step-by-Step Guide to Computer Attacks and
Effective Defenses (2nd edition). Prentice Hall, 2006 (first edition: 2001).

[55] E. Skoudis and L. Zeltser. Malware: Fighting Malicious Code. Prentice Hall, 2003. Intended for
systems administrators.

[56] E. H. Spafford. Crisis and aftermath. Comm. ACM, 32(6):678–687, 1989. Reprinted: [13, Article 12].

[57] E. H. Spafford, K. A. Heaphy, and D. J. Ferbrache. A computer virus primer. In [13] as Article 20,
pages 316–355, 1990.

[58] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in your spare time. In USENIX
Security, 2002.

[59] C. Stoll. The Cuckoo’s Egg. Simon and Schuster, 1989.

[60] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. A. Kemmerer, C. Kruegel, and
G. Vigna. Your botnet is my botnet: Analysis of a botnet takeover. In ACM Comp. & Comm. Security
(CCS), pages 635–647. ACM, 2009. Shorter version: IEEE Security & Privacy 9(1):64–72, 2011.

[61] D. Stuttard and M. Pinto. The Web Application Hacker’s Handbook. Wiley, 2008.

[62] P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley and Symantec Press, 2005.

[63] K. Thompson. Reflections on trusting trust. Comm. ACM, 27(8):761–763, 1984.

[64] Y. Wang and D. Beck. Fast user-mode rootkit scanner for the enterprise. In Large Installation Sys.
Admin. Conf. (LISA), pages 23–30. USENIX, 2005.

[65] A. L. Young and M. Yung. Cryptovirology: Extortion-based security threats and countermeasures. In
IEEE Symp. Security and Privacy, pages 129–140, 1996.

[66] A. L. Young and M. Yung. On ransomware and envisioning the enemy of tomorrow. IEEE Computer,
50(11):82–85, 2017. See also same authors: “Cryptovirology”, Comm. ACM 60(7):24–26, 2017.

http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://www.securityfocus.com/vulnerabilities
https://cs.dartmouth.edu/~bx/blog/2015/10/02/a-history-of-linux-kernel-module-signing.html
https://cs.dartmouth.edu/~bx/blog/2015/10/02/a-history-of-linux-kernel-module-signing.html

	Malicious Software
	Defining malware
	Viruses and worms
	Virus anti-detection and worm-spreading techniques
	Stealth: Trojan horses, backdoors, keyloggers, rootkits
	Rootkit detail: installation, object modification, hijacking
	Drive-by downloads and droppers
	Ransomware, botnets and other beasts
	Categorizing malware
	*End notes and further reading

