
COMP1006/1406 - Summer 2016 - Tutorial 5

Objectives: To work with Binary (Search) Trees and Generics.

Binary Search Trees

You have seen binary trees in class. In this problem you will investigate binary search
trees, which are special trees that satisfy the binary search tree property. In the
following, we will assume that all trees have unique values in their nodes.

The binary search tree property states that for any node in the binary tree, its value
is greater than all values of every node in its left subtree and its value is less than all values
of every node in its right subtree.

Consider the following two binary trees:

The tree on the left is a binary search. If you look at any node all value in its left subtree
are less than it and all values in its right subtree are greater. The binary tree on the right
is NOT a binary search tree. In particular, the nodes with values 6 and 5 violate the binary
search tree property.

As the name suggests, a binary search tree is a good data structure for searching. When
searching for a item you look at the root of the tree. If you do not find it, you either look at
the left or right subtree depending on if the value you are looking for is greater or smaller
than the value of the root. You then repeat this recursively until you either find the item
you are looking for or reach the bottom of the tree (and conclude the item is NOT in the
tree).

è Using the BTNode class provided, implement the two missing methods: isBST and
search. The first method confirms if a binary tree is a binary search tree and the sec-
ond searches for a value in a binary search tree.

1



Generics

The binary (search) trees from the previous problem only stores an Integer in each node.
The methods you wrote are essentially the same for any kind of data that you might store
though. Using generics, you will rewrite the code using generics.

è Create a generic node class for binary trees called Node. The class should have three
attributes: the data (which is generic) and two references to Nodes.

Your class should also have several constructors (like the BTNode class). Make some
binary trees of with different data types.

è Implement generic versions of your isBST and search methods. You can make the
assumption that the type T extends the Comparable interface. In order to enforce this you
need to use a bounded type parameter. See

https://docs.oracle.com/javase/tutorial/java/generics/bounded.html

for help with this.

2

https://docs.oracle.com/javase/tutorial/java/generics/bounded.html

	Writing Text Data
	Objects I
	Objects II

