
Day 4

COMP1006/1406
Summer 2016

M. Jason Hinek
Carleton University

today’s agenda
· assignments

· questions about assignment 2

· a quick look back
· constructors
· signatures and overloading
· encapsulation / information hiding
· inheritance

· polymorphism

· abstract classes

2

last time...

constructors
a constructor is called when an object is created

· has no return type (not even void)
· must have the same name as the class
· are not method

we can call another constructor using this() provided it is the first line
of the constructor (constructor chaining)

this is also a reference to the current object and is used when paramater
names are the same as attribute names

3

last time...

signatures and overloading

A method or constructor signature consists of

· the name of the method or constructor

· the input parameters of the method or constructor
(number, type and order)

Java identifies methods and constructors by their signatures.
This allows for method and constructor overloading.

· overloading allows multiple methods/constructors to have the same
name as long as their signatures are different
(return types do not matter!)

4

last time...

encapsulation / information hiding

good oop design makes use of encapsulation (information hiding)

hide the internal representation of the state and provide an interface to
use the data

· make all attributes (data) private or protected
· provide public getters to view data
· provide public setters to modify data
· provide other public methods that operate on the data

5

last time...

inheritance
the extends keyword allows a class to extend or inherit from another
class

· if you don’t extend a class you automatically extend Object
· a class can explicitly extend only one class
· when you extend a class you receive things (attributes/methods)
from the parent class

6

now let’s look at

more stuff!

7

Java’s Object class

public class Object{
/* no attributes */

/* single constructor */
public Object(){}

/* 11 methods */
public String toString(){...}
public int hashCode(){...}
public boolean equals(Object obj){...}
...

}

· java.lang.Object

· this is Java’s root class
(its basic non-primitive type)

8

inheritance
Let’s run the following simple class;

public class Student {
/* attributes */
public String name;
public int id;

public static void main(String[] args){
Student s = new Student();
System.out.println(s);
System.out.println(s.toString());
System.out.println(s.hashCode);
System.out.println(s.equals(s));

}
}

Why does this work?

9

inheritance
Let’s run the following simple class;

public class Student {
/* attributes */
public String name;
public int id;

public static void main(String[] args){
Student s = new Student();
System.out.println(s);
System.out.println(s.toString());
System.out.println(s.hashCode);
System.out.println(s.equals(s));

}
}

Why does this work?

9

inheritance
public class Student{

/* attributes */
public String name;
public int id;
...

}

when you compile this class it is automatically modified to inherit from
the Object class

public class Student extends Object{
/* attributes */
public String name;
public int id;
...

}

10

inheritance
public class Student extends Object{

/* attributes */
public String name;
public int id;
...

}

· Java keyword extends used for inheritance

· when we inherit from a class
· we get all public/protected attributes from the parent class
· we get all public/protected methods from the parent class
· we get none of the constructors

· we say that Student is an Object

· this is the “is-a” relationship

· we say that Student has a String

· this is the “has-a” relationship
· this is class composition (not inheritance)

11

inheritance
public class Student extends Object{

/* attributes */
public String name;
public int id;
...

}

· Java keyword extends used for inheritance

· when we inherit from a class
· we get all public/protected attributes from the parent class
· we get all public/protected methods from the parent class
· we get none of the constructors

· we say that Student is an Object
· this is the “is-a” relationship

· we say that Student has a String
· this is the “has-a” relationship
· this is class composition (not inheritance)

11

inheritance
public class Student extends Object{

/* attributes */
public String name;
public int id;
...

}

· a class can only have one parent class

· every class, except Object, has exactly one parent class

· we get a hierarchy of classes
· a family tree of classes

12

inheritance
public class Student extends Object{

/* attributes */
public String name;
public int id;
...

}

· a class can only have one parent class

· every class, except Object, has exactly one parent class

· we get a hierarchy of classes
· a family tree of classes

12

inheritance
public class Student extends Object{

/* attributes */
public String name;
public int id;
...

}

we say that
· Student is a child class of Object
· Student is a subclass of Object (direct subclass)
· Student is a derived class of Object
· Student is a descendent of Object

we say that
· Object is a parent class of Student
· Object is a super class of Student (direct super class)
· Object is a ancestor of Student

13

inheritance
public class Student extends Object{

/* attributes */
public String name;
public int id;
...

}

a Student object gets everything (state and behaviour) that an Object
has in addition to whatever else we define in the Student class

this helps us reduce code!

14

inheritance
public class Student extends Object{

/* attributes */
public String name;
public int id;
...

}

what do we get from Object?

· toString()

· hashCode()

· equals(Object o)

· eight other methods that we will most likely not use

Are these useful?

15

Object’s equals method

public boolean equals(Object obj)

· checks if both this and obj are the same

· returns this == obj

· this is almost certainly not what we want! (why?)

Aside: Java’s equality operator == should only be used for primitive data
types (and null) in most cases. a == b returns true if the value of the
left hand side is the same as the value of the right hand side. But for
objects, these values are references and not the data itself.

16

Object’s toString method

public String toString()

· returns a string representation of the object

· the returned string looks something like
· Ball@5af660f (for a Ball object)
· Ljava.lang.String;@462467e5 (for am array of Strings)

· this is almost certainly not what we want!

17

Object’s hashCode method

public int hashCode()

· returns a hash code value for the object

· can think of this like an integer fingerprint of the object
· different objects can have the same has code value

· we may want to use this

18

inheritance and method overriding

The methods that we inherit from Object may or may not be useful.

We can change the bahaviour of inherited methods though.
We do this through method overriding

@Override
public String toString(){

return this.name + ", " + this.id;
}

this will redefine the toString method in the Student class.

· all student objects will run this code instead of Object’s version
· this doesn’t change Object’s code, just the code in a Student

Note: the @Override is not part of the Java language. It is an
annotation that the compiler to use to make sure that the method you
are overriding is actually an inherited method.

19

inheritance and method overriding

public class Student extends Object{
/* attributes */
public String name;
public int id;

@Override ←− @Override is an annotation
public String toString(){

return this.name + ", " + this.id;
}

}

method overriding allows us to redefine a parent’s (or grandparent’s)
method definition. which method is executed?

· Java first looks in current class
· if method is not defined, look at parent class
· if method is not defined, look at parent class
· ...
· get method from Object

20

inheritance and method overriding

rules for method overriding
· signature must be identical (input parameter names can be different)

· return type must be the same or more restrictive
· same if primitive
· otherwise, same or a subtype (child class)

· modifiers must be the same or less restrictive
· protected can be overridden as friendly or public
· friendly cab be overridden as public
· we cannot override private methods

21

inheritance and method overriding

inheritance lets us reduce write less code by inheriting methods from a
parent or grandparent class

what happens when we need to make a change to the inherited method
(overriding) but most of the code is still the same? we don’t want to
rewrite the entire method body of the parent.

the keyword super is a reference to the parent. we can use it to access
parent attributes and parent methods.

public class Student extends Object{

@Override ←− @Override is an annotation
public String toString(){

if(this.name == null){
return super.toString();

}else{
return this.name + ", " + this.id;

}
}

}

22

inheritance and constructors
by default, the first thing that any constructor we write does is call the
zero argument constructor of its parent class

if want a different parent constructor called we need to explicitly call it
using super

Take not that
· super(...) must be called on the first line of the constructor

· this(...) must be called on the first line of the constructor

· we cannot call both super() and this() in a constructor

· we can only access a direct parent’s constructor.
There is no superduper!

23

inheritance and constructors

let’s see some examples...

24

inheritance
when the "things" that we are modelling in our programs have a natural
hierarchical structure, inheritance it lends itself nicely to OOP and
inheritance

· we can have a root class that is very general (animimals)

· root class has some children that are both animals but also very
different from each other

· we continue creating new classes that become more specific (specific
types of dogs)

25

inheritance
· from Dr. Lanthier’s notes

http://people.scs.carleton.ca/~lanthier/teaching/COMP1406/Notes/
COMP1406_Ch4_ClassHierarchiesAndInheritance.pdf

26

http://people.scs.carleton.ca/~lanthier/teaching/COMP1406/Notes/COMP1406_Ch4_ClassHierarchiesAndInheritance.pdf
http://people.scs.carleton.ca/~lanthier/teaching/COMP1406/Notes/COMP1406_Ch4_ClassHierarchiesAndInheritance.pdf

inheritance
· from Dr. Lanthier’s notes

27

inheritance

· banking example

so what? We have reused our code but how does this actually help?

28

inheritance

· banking example

so what? We have reused our code but how does this actually help?

28

polymorphism

· banking example

so what? We have reused our code but how does this actually help?

· polymorphism to the rescue!

29

polymorphism

· banking example

BankAccount b1 = new PowerSavings();
BankAccount b2 = new BusinessChequing();
BandAccount b3 = new ChequingAccount();

polymorphism allows us to declare a variable for some type (class) and
populate it with an object of a different type (class) as long as it is a
subclass of the variable type

a PowerSavings object is-a BankAccount object, so we are allowed to
have a BankAccount variable that references it

b1 is a BankAccount object, but the behaviour of it is defined by the
PowerSavings class

30

polymorphism

polymorphism allows subclasses to define their own unique behaviour
without losing the functionality of the superclass(es).

A polymorphic object is capable of executing specific behaviour based on
its type.

Method overloading and overriding are examples of polymorphism.

· early binding or static binding is when method behaviour of an
object is determined at compile time.

· static, private and final methods are bound at compile time
· the compiler knows exactly which method is being called

· late binding or dynamic binding or dynamic dispatch is when
method behaviour of an object is determined at runtime

· the compiler does not know which method is being called so it has to
wait until runtime to determine this

· BankAccount b; is this a BankAccount, a PowerSavings, a
BusinessChequing, ...?

31

polymorphism

with polymorphism
· objects can act like other objects
(very related objects though!)

· this simplifies code understanding
· have one array of BankAccount objects that holds everything

· standardizes method naming
· all BankAccount objects have similar behaviour defined by the
BankAccount class

· you can add a new kind of BankAccount by simply writing a new
class that extends BankAccount and it will still have the same
behaviour

32

now let’s look at

abstract methods and classes

33

abstract methods
an abstract method allows us to declare a method without an
implementation

public abstract String getName(int n);

the intention is for subclasses to override (define) the method

· forces the same method on child classes

· cannot be a final method (as these cannot be overriden)

· forces class itself to also be abstract

34

abstract classes
an abstract class cannot be instantiated.
a concrete class can be instantiated.

public abstract class AbstractPlayer{
...

}

the intention is to provide framework for child classes

· class cannot be instantiated
(but is a valid data reference type)

· cannot be a final class (as these cannot be extended)

· no restrictions on what can be in an abstract class
· attributes, methods, constructors
· does not need to have abstract methods

· intention is for a descendant class to be concrete

35

abstract classes
why use abstract classes?

· why use inheritance?

36

abstract classes
why use abstract classes?

· why use inheritance?

36

abstract classes
why use abstract classes?

· why use inheritance?

GameCharacters

↑ ↑
UserCharcater ComputerCharacter

↑ ↑
Friend Foe

36

abstract classes
why use abstract classes?

· why use inheritance?

GameCharacters
↑ ↑

UserCharcater ComputerCharacter

↑ ↑
Friend Foe

36

abstract classes
why use abstract classes?

· why use inheritance?

GameCharacters
↑ ↑

UserCharcater ComputerCharacter
↑ ↑

Friend Foe

36

abstract classes
why use abstract classes?

· why use inheritance?

abstract GameCharacters
↑ ↑

UserCharacter ComputerCharacter
↑ ↑

Friend Foe

36

abstract classes
why use abstract classes?

· why use inheritance?

abstract GameCharacters
↑ ↑

UserCharacter abstract ComputerCharacter

↑ ↑
Friend Foe

36

abstract classes
why use abstract classes?

· why use inheritance?

abstract GameCharacters
↑ ↑

UserCharacter abstract ComputerCharacter

↑ ↑
Friend Foe

· an abstract class can provide an interface or partial interface
between implementation and users of code

· helps modularize code

36

overriding and hiding

inheritance can get tricky in Java...(and other languages)
· method overriding

· instance methods are overridden
· same method signature (name and argument list) and return type*

· method hiding
· static methods are hidden
· same method signature (name and argument list) and return type*

· attribute hiding (field hiding)
· any attribute in the parent class with the same name is hidden
· type of attribute does not matter
· Avoid attribute hiding!

· method overriding/hiding leads to different behaviour

37

now let’s look at

Interfaces

38

abstract classes and interfaces

Java abstract classes
· related classes extend the same abstract class

· similar behaviour is implemented in the abstract class itself
· different behaviour is implemented in overridden abstract methods

· you can only extend one single class

· all classes that extend a given abstract class are related

· abstract class can provide a contract between code and users of code

Java interfaces
· provide a contract between code and users of code

· typically specifies how different code interacts with each other

· a class can implements any number of interfaces

· classes that implements a given interface can be very unrelated

39

abstract classes and interfaces

Java abstract classes
· often defines what you are

· usually a noun;

Java interfaces
· often defines what you can do

· usually an adjective; Comparable, Serielizable, Printable, etc

· can also define what you are (List, Set)

40

interfaces
public interface Printable{

boolean sendToPrinter(String);
boolean killPrintJob(int);

}

· can contain abstract method declarations (without definition)
· are public by default (you can omit this)
· implicitly abstract (you do not write this)

· can contain constant attributes
· are public static final by default (can omit this)

· can have default methods and static methods (these have
definitions) and enum types

· can extend any number of other interfaces

· is a valid data reference type
· cannot be instantiated (like an abstract class)
· we can have variables of this type

41

Comparable

consider the Comparable interface

public interface Comparable<Type>{
int compareTo(Type other);

// returns an integer X satisfying
// X < 0 if this is "less than" other
// X = 0 if this is "equal to" other
// X > 0 if this is "greater than" other

}

· declared like a class, using interface instead

· has a single method called compareTo()
· by default all methods are public abstract

· uses generics (we’ll revisit this more later)
· allows us to treat types as parameters <type>
· avoids the messiness we saw with Object’s equals()

42

Comparable

using the Comparable interface

public interface Comparable<Type>{
int compareTo(Type other);

}

· class that implements the Comparable interface either

· must override (define) the method compareTo, or
· must be abstract

· public class SomeClass implements Comparable<T>{ ...

public interface SomeInterface extends Comparable<T>{...

43

Comparable

using the Comparable interface

public interface Comparable<Type>{
int compareTo(Type other);

}

· class that implements the Comparable interface either

· must override (define) the method compareTo, or
· must be abstract

· public class SomeClass implements Comparable<T>{ ...

public interface SomeInterface extends Comparable<T>{...

43

Comparable

using the Comparable interface

public interface Comparable<Type>{
int compareTo(Type other);

}

· class that implements the Comparable interface either
· must override (define) the method compareTo, or

· must be abstract

· public class SomeClass implements Comparable<T>{ ...

public interface SomeInterface extends Comparable<T>{...

43

Comparable

using the Comparable interface

public interface Comparable<Type>{
int compareTo(Type other);

}

· class that implements the Comparable interface either
· must override (define) the method compareTo, or
· must be abstract

· public class SomeClass implements Comparable<T>{ ...

public interface SomeInterface extends Comparable<T>{...

43

Comparable

using the Comparable interface

public interface Comparable<Type>{
int compareTo(Type other);

}

· class that implements the Comparable interface either
· must override (define) the method compareTo, or
· must be abstract

· public class SomeClass implements Comparable<T>{ ...

public interface SomeInterface extends Comparable<T>{...

43

Comparable

public class Student implements Comparable<Student>{
private String name;
private int id;

@Override
public static int compareTo(Student other){

if(other == null){
return 1;

}
return this.getID() - other.getID();

}

...

}

Student s = new Student("cat", 12);
Student t = new Student("dog", 7);
System.out.println(s.compareTo(t));

44

abstract...

· abstract methods
· a method declared without a definition
· public abstract int foo(String[] in);
· forces the class to be abstract as well
· cannot be final

· abstract classes
· cannot be instantiated
· may or may not contain abstract methods
· are valid reference types and can be subclassed
· cannot be final

· concrete classes
· all methods (declared or inherited) must be defined
· can be instantiated (all objects other than arrays are instantiations of
concrete classes)

· is a valid data reference type

45

final...

· final attributes
· value cannot be changed once it is defined
· must be defined in constructor or initialization block
· primitive data types, strings and immutable data types are constants

· final methods
· cannot be overridden
· cannot be abstract

· final classes
· cannot be extended
· cannot be abstract

46

access modifiers...
modifier class package subclass world
public 3 3 3 3

protected 3 3 3 7

none (default) 3 3 7 7

private 3 7 7 7

· everything is accessible from within the class
· a class in the same package has access to everything except private
members

· a subclass has access to public and protected members
· everyone else only has access to public members

47

	Welcome

