
Day 5

COMP1006/1406
Summer 2016

M. Jason Hinek
Carleton University

today’s agenda
· assignments

· Assignment 2 is in
· Assignment 3 is out

· a quick look back
· inheritance and polymorphism

· interfaces
· the Comparable interface

· Problem solving

· assignments

2

last time...
inheritance allows us to reduce duplicate code by sharing code among
different classes

· when we extend a class we inherit all public/protected attributes
and methods from that class

· we can only have one direct parent class (except Object which has
no parent)

polymorphism - having multiple forms
· we have seen three kinds of polymorphism

· method overloading
· method overriding
· subtype polymorphism

3

interfaces
let’s first review abstract classes in Java

public abstract class Insect{
...

}

· related classes extend the same abstract class
· similar (general) behaviour is implemented in the abstract class itself
· different (specific) behaviour is implemented in overridden methods

· you can only extend one single class (abstract or not)

· abstract class can provide a contract between code and users of code

· the abstract class defines what an object is
· name is usually a noun

4

interfaces
an interface in Java is similar to an abstract class

public iterface Printable{
...

}

· are valid reference data types

· cannot be instantiated

· intention is for other classes to implement it (using implements)
· public class A extends Q implements B{...}
· public class A implements B{...}
· A is-a B

· provides a contract between code and users of code

5

interfaces
an interface in Java is different from abstract classes

public iterface Printable{
...

}

· classes that implement an interface can be very unrelated

· a class an implement any number of interfaces (using implements)
· public class A extends Q implements B,C,D{...}
· A is-a B and A is-a C and A is-a D (and A is-a Q)
· no implicit interface implemented

· interfaces usually define what an object can do
· name is usually an adjective (Comparable, Serielizable)
· can also define what you are (List, Set) but doesn’t specify the data

6

interfaces

public iterface Printable{

int MAX_NUM_JOBS = 99; // constant

boolean sendToPrint(String); // abstract
boolean killPrintJob(int); // methods

}

· can contain abstract method declarations (without definition)
· are public by default (you can omit this)
· implicitly abstract (you do not write this)

· can contain constant class attributes
· are public static final by default (can omit this)

· can have default methods and static methods (these have
definitions) and enum types

7

Comparable

consider the Comparable interface

public interface Comparable<Type>{
int compareTo(Type other);

// returns an integer X satisfying
// X < 0 if this is "less than" other
// X = 0 if this is "equal to" other
// X > 0 if this is "greater than" other

}

· declared like a class, using interface instead

· has a single method called compareTo()
· by default all methods are public abstract

· uses generics (we’ll revisit this in more detail later)
· allows us to treat types as parameters <type>
· specifies exactly what we can compare our objects with
· avoids the messiness we saw with String’s equals()

8

Comparable

using the Comparable interface

public interface Comparable<Type>{
int compareTo(Type other);

}

public class MyClass implements Comparable<MyClass>{...
· class that implements the Comparable interface either

· must override (define) the method compareTo, or
· must be abstract

public interface SomeInterface extends Comparable<T>{...

· interfaces can extends any number of other interfaces

9

Comparable

public class Student implements Comparable<Student>{
private String name;
private int id;

@Override
public static int compareTo(Student other){

if(other == null){
return 1;

}
return this.getID() - other.getID();

}

...

}

Student s = new Student("cat", 12);
Student t = new Student("dog", 7);
System.out.println(s.compareTo(t));

10

Comparable

public class Student implements Comparable<Student>{
private String name;
private Integer id;

@Override
public static int compareTo(Student other){

if(other == null){
return 1;

}

/* use built-in compareTo of other objects to help us */
return this.getID().compareTo(other.getID());

}

...

}

Student s = new Student("cat", new Integer(-32));
Student t = new Student("dog", new Integer(15));
System.out.println(s.compareTo(t));

11

example

The Arrays class provides static methods to help work with arrays.

toString(...) prints an array nicely (like Python)

House[] houses = new House[3]{ ... };
System.out.println(java.util.Arrays.toString(houses));

sort(...) sorts the elements in an array

java.util.Arrays.sort(houses);
System.out.println(java.util.Arrays.toString(houses));

12

let’s take a break...
for 3 minutes

13

Problem Solving

George Pólya
· How to Solve it

· Terminology: data, unknown, condition

14

Problem Solving

Using the given data to find the unknown such that the condition is
satisfied.

· the data is the information you have.

· the unknown is the information you want.

· the condition is the constraints on the problem.
These are rules (often implicit) that must be followed.

Alternatively...

Using the given data to achieve a goal such that the condition is
satisfied.

Using the given data to create an algorithm/program that achieves a
goal such that the constraints are satisfied.

15

Problem Solving

The four phases of problem solving

1. Understand the problem.
· identify the data/unknown/condition

2. Devise a plan.
· choose a technique/heuristic/approach
· start over if needed

3. Carry out the plan.
· execute your plan
· check each step
· start over if needed

4. Look back.
· reflect on what you did
· start over if needed

16

Problem Solving

General strategies

· Related problems
· transform the problem into one you already know how to solve

· Abstraction
· remove details that are not relevant to the problem

· Divide and Conquer
· break the problem into (smaller) sub-problems

· Backward Chaining
· start from the solution and work backwards

17

Problem Solving

General strategies (from Think Like a Programmer, V. A. Spraul)

· Always have a plan

· Restate the problem

· Break the problem down

· Start with what you know

· Reduce the problem

· Look for analogies

· Experiment

· Don’t get frustrated!

18

Problem Solving

General strategies (from Think Like a Programmer, V. A. Spraul)
· Always have a plan

· Aimless wandering wastes time.
· Without a plan, you are hoping for a lucky break.
· Plans give you intermediate goals.
· Plans can change.

· Restate the problem
· Check out the problem from every angle before starting.
· We may find the goal is not what we thought.
· Use restatement to confirm understanding.

· Break the problem down
· Divide the problem into steps or phases.
· Difficulty for each phase can be an order of magnitude lower.
· Sometimes the sub-problems are hidden.

19

Problem Solving

General strategies (from Think Like a Programmer, V. A. Spraul)
· Start with what you know

· Fully investigate a problem with the skills you have first.
· Build confidence and momentum towards your goal.
· You may learn more about the problem this way.

· Reduce the problem
· Reduce scope by adding or removing constraints.
· Work on a simpler problem that isn’t easily divided.
· Pinpoint where remaining difficulties lie.

· Look for analogies
· Look for similarities to problems you’ve already solved.
· Recognizing analogies improves speed and skill.
· You need to build up a store of prior problems before you can find
analogies.

20

Problem Solving

General strategies (from Think Like a Programmer, V. A. Spraul)
· Experiment

· Try things and observe the results (this is not guessing!).
· Trial-and-error is a valid approach to problem solving (not to be
confused with guessing)

· Make small test programs.

· Don’t get frustrated
· Everything will seem to take longer and be harder!
· Avoiding frustration is a decision you make.
· Go back to the plan, work on a different problem, or take a break.

21

Problem Solving

General strategies (from Think Like a Programmer, V. A. Spraul)
· Experiment

· Try things and observe the results (this is not guessing!).
· Trial-and-error is a valid approach to problem solving (not to be
confused with guessing)

· Make small test programs.

· Don’t get frustrated
· Everything will seem to take longer and be harder!
· Avoiding frustration is a decision you make.
· Go back to the plan, work on a different problem, or take a break.

21

reflection...
Questions to ask yourself about assignment 1

· did I understand the questions?
· what was given?
· what was needed to be done?
· what were the constraints?

· did I test my code?
· did I verify any given example code?
· did I generate test cases to extensively test my code

· how did I try to get help if I didn’t understand the questions?

· did I give myself enough time to complete the assignment?

22

let’s take a break...
for 3 minutes

23

some review slides
(in progress)

24

abstract...

· abstract methods
· a method declared without a definition
· public abstract int foo(String[] in);
· forces the class to be abstract as well
· cannot be final

· abstract classes
· cannot be instantiated
· may or may not contain abstract methods
· are valid reference types and can be subclassed
· cannot be final

· concrete classes
· all methods (declared or inherited) must be defined
· can be instantiated (all objects other than arrays are instantiations of
concrete classes)

· is a valid data reference type

25

final...

· final attributes
· value cannot be changed once it is defined
· must be defined in constructor or initialization block
· primitive data types, strings and immutable data types are constants

· final methods
· cannot be overridden
· cannot be abstract

· final classes
· cannot be extended
· cannot be abstract

26

access modifiers...
modifier class package subclass world
public 3 3 3 3

protected 3 3 3 7

none (default) 3 3 7 7

private 3 7 7 7

· everything is accessible from within the class
· a class in the same package has access to everything except private
members

· a subclass has access to public and protected members
· everyone else only has access to public members

27

arrays...

an array is a container that store a collection of items of the same type

int[] intArray; // variable declaration

intArray = new intArray[12]; // allocation of memory in heap for array

intArray[0] = 13; //
... // population of the array with data
intArray[11] = 163; //

When you declare an array variable you can also initialize it using {...}.
This only works when you declare the variable.

/* array declaration, allocation and initialization */
int[] intArray = {1,3,5,7,9};

/* all of these are equivalent */
String[] words = {"cat", "dog", "eel"};
String[] words = new String[]{"cat", "dog", "eel"};
String[] words = new String[3]{"cat", "dog", "eel"};

28

	Welcome

