
Day 6

COMP1006/1406
Summer 2016

M. Jason Hinek
Carleton University



today’s agenda
· assignments

· Assignment 3 is due on Monday

· a quick look back
· abstract classes and interfaces

· casting objects

· abstract data types

2



last time...
· abstract classes

· interfaces

· quiz 3

3



casting objects...

class Parent{ class Child extends Parent{
void foo(){...} void bar(){...}

} }

Parent pp = new Parent();
Parent pc = new Child();
Child cc = new Child();

pp.foo();
pc.foo();
cc.foo();

pp.bar();
pc.bar();
cc.bar();

4



casting objects...

class Parent{ class Child extends Parent{
void foo(){...} void bar(){...}

} }

Parent pp = new Parent();
Parent pc = new Child();
Child cc = new Child();

pp.foo(); 3
pc.foo(); 3
cc.foo(); 3

pp.bar(); 7
pc.bar(); 7
cc.bar(); 3

5



casting objects...

class Parent{ class Child extends Parent{
void foo(){...} void bar(){...}

} }

Parent pp = new Parent();
Parent pc = new Child();
Child cc = new Child();

pp.foo(); 3
pc.foo(); 3
cc.foo(); 3

// pp.bar(); 777 we can cast the Parent back to a Child
((Child)pc).bar(); 3 ONLY because it was created (new)
cc.bar(); 3 as a Child

We can cast down the hierarchy chain if the object really is what we
want to cast it to.

6



casting objects...

casting down the hierarchy chain will often violate good OOP
design/practice

class Parent{ class Child extends Parent{
void foo(){...} void bar(){...}

} }

Parent[] pp = new Parent[10];
for(int i=0; i<10; i+=1){

if(Math.random() < 0.5){ pp[i] = new Parent(); }
else{ pp[i] = new Child(); }

}

for(Parent p : pp){
((Child)p).bar(); // this will not work

}

7



casting objects...

casting down the hierarchy chain will often violate good OOP
design/practice

class Parent{ class Child extends Parent{
void foo(){...} void bar(){...}

} }

Parent[] pp = new Parent[10];
for(int i=0; i<10; i+=1){

if(Math.random() < 0.5){ pp[i] = new Parent(); }
else{ pp[i] = new Child(); }

}

for(Parent p : pp){
if(p instanceof Child)

((Child)p).bar(); // this will work
}

8



now let’s look at

date types/abstract data types/data structures

9



data types

primitive data types
· byte, short, int, long (integer types)
· float, double (approximate real number types)
· char, boolean
· variables store the actual data

reference data types
· classes (abstract and concrete)
· arrays
· interfaces
· enums
· variables store references to where the actual data is

10



data structures

What is a data structure?

a data structure is a systematic approach to storing and accessing
data so that it can be used efficiently for a specific purpose

in Java, data structures are classes (or a primitive data type)

11



abstract data types

an abstract data type or ADT is data and operations on that data
that are precisely specified independent of any implementation

the operations may or may not have efficiency guarantees

an ADT is a mathematical construct. We simulate them as APIs or
interfaces.

an ADT is NOT

· an implementation of storing data and operations on that data in
any programming language

· a specific way to store data

· specific ways (algorithms) to act on the data

For example, the integers from a math class is an abstract data type. In
Java, we use ints or Integers.

12



abstract data types

a data structure is the implementation of an abstract data type

real world−→ADT−→ data structure (class)

for us, abstract data type and interface (contract) will mean the same
thing

· ADT/interface
· tells us what can be done with the data
· API, abstract class, java interface
· should not reveal how the data is stored

· data structure/implementation
· is how those things are done
· concrete class
· the actual code

COMP2402 will focus on ADTs and data types
13



abstract data types

good object-oriented design will separate the interface and the
implementation

Why?

14



some fundamental ADTs
the list ADT

· ordered collection of data x0,x1, . . . ,xn−1

· look at what is in the list

· size of the list

· add to the list

· remove from the list

· ask if the list is empty

· create a new list

15



some fundamental ADTs
the list ADT

· ordered collection of data x0,x1, . . . ,xn−1

· look at what is in the list

· size of the list

· add to the list

· remove from the list

· ask if the list is empty

· create a new list

15



some fundamental ADTs
the list ADT

· ordered collection of data x0,x1, . . . ,xn−1

· look at what is in the list

· size of the list

· add to the list

· remove from the list

· ask if the list is empty

· create a new list

15



some fundamental ADTs
the stack ADT

· ordered collection of data (top is the last item added )

· push (add an element to the top)

· pop (remove top element)

Last In First Out (LIFO)

· peek (look at the top)

· isEmpty (is the stack empty)

16



some fundamental ADTs
the stack ADT

· ordered collection of data (top is the last item added )

· push (add an element to the top)

· pop (remove top element)

Last In First Out (LIFO)

· peek (look at the top)

· isEmpty (is the stack empty)

16



some fundamental ADTs
the stack ADT

· ordered collection of data (top is the last item added )

· push (add an element to the top)

· pop (remove top element)

Last In First Out (LIFO)

· peek (look at the top)

· isEmpty (is the stack empty)

16



some fundamental ADTs
the stack ADT

· ordered collection of data (top is the last item added )

· push (add an element to the top)

· pop (remove top element) Last In First Out (LIFO)
· peek (look at the top)

· isEmpty (is the stack empty)

16



some fundamental ADTs
the queue ADT

· ordered collection of data (front and back)

· enqueue (add an element to the back)

· dequeue (remove element from the front)

First In First Out (FIFO)

· peek (look at the front)

· isEmpty (is the queue empty)

17



some fundamental ADTs
the queue ADT

· ordered collection of data (front and back)

· enqueue (add an element to the back)

· dequeue (remove element from the front)

First In First Out (FIFO)

· peek (look at the front)

· isEmpty (is the queue empty)

17



some fundamental ADTs
the queue ADT

· ordered collection of data (front and back)

· enqueue (add an element to the back)

· dequeue (remove element from the front)

First In First Out (FIFO)

· peek (look at the front)

· isEmpty (is the queue empty)

17



some fundamental ADTs
the queue ADT

· ordered collection of data (front and back)

· enqueue (add an element to the back)

· dequeue (remove element from the front) First In First Out (FIFO)
· peek (look at the front)

· isEmpty (is the queue empty)

17



some fundamental ADTs
stack and queue

· both are restricted lists

· stack removes items according to LIFO principle

· queue removes items according to FIFO principle

Why do we need (or want) restricted lists?

· forces the LIFO or FIFO principal

· prevents intended misuse (cheating)
· prevents unintended misuse (mistakes)

· might be more efficient

· array vs linked lists (we’ll look at this soon)

18



some fundamental ADTs
stack and queue

· both are restricted lists

· stack removes items according to LIFO principle

· queue removes items according to FIFO principle

Why do we need (or want) restricted lists?

· forces the LIFO or FIFO principal

· prevents intended misuse (cheating)
· prevents unintended misuse (mistakes)

· might be more efficient

· array vs linked lists (we’ll look at this soon)

18



some fundamental ADTs
stack and queue

· both are restricted lists

· stack removes items according to LIFO principle

· queue removes items according to FIFO principle

Why do we need (or want) restricted lists?

· forces the LIFO or FIFO principal

· prevents intended misuse (cheating)
· prevents unintended misuse (mistakes)

· might be more efficient

· array vs linked lists (we’ll look at this soon)

18



some fundamental ADTs
stack and queue

· both are restricted lists

· stack removes items according to LIFO principle

· queue removes items according to FIFO principle

Why do we need (or want) restricted lists?

· forces the LIFO or FIFO principal
· prevents intended misuse (cheating)
· prevents unintended misuse (mistakes)

· might be more efficient

· array vs linked lists (we’ll look at this soon)

18



some fundamental ADTs
stack and queue

· both are restricted lists

· stack removes items according to LIFO principle

· queue removes items according to FIFO principle

Why do we need (or want) restricted lists?

· forces the LIFO or FIFO principal
· prevents intended misuse (cheating)
· prevents unintended misuse (mistakes)

· might be more efficient
· array vs linked lists (we’ll look at this soon)

18



some fundamental ADTs
priority queue

· a queue in which removal is based on a priority
(regardless of when added)

· highest/lowest priority item removed first
· emergency room in a hospital uses a priority queue

deque
· a double-ended queue
· allows arbitrary adding/removing from front and back

set
· an unordered collection of data
· add, remove, isMember, size, etc

19



some fundamental ADTs
the map (or dictionary) ADT

· a collection of (key,value) pairs
· keys are unique

· mutable keys are dangerous

· some maps have order and some do not

20



some fundamental ADTs
the map (or dictionary) ADT

· a collection of (key,value) pairs
· keys are unique

· mutable keys are dangerous

· some maps have order and some do not

20



some fundamental ADTs
the map (or dictionary) ADT

· a collection of (key,value) pairs
· keys are unique

· mutable keys are dangerous

· some maps have order and some do not

20



abstract data types

why use ADTs?

good ADTs
· provide a model of real things (abstraction)
· capture the essence of the real things

· the data

· capture the fundamental behaviour/operation of the real things
· the operations on the data

· will lead to the interface/contract for the actual data type

when creating data types from ADTs
· interface/contract is mostly defined

· abstract class or Java interface

· encapsulation comes for free
· changing data representation does not affect users of data type
· changing implementations does not affect users of the data type

21



abstract data types

why use ADTs?

good ADTs
· provide a model of real things (abstraction)
· capture the essence of the real things

· the data

· capture the fundamental behaviour/operation of the real things
· the operations on the data

· will lead to the interface/contract for the actual data type

when creating data types from ADTs
· interface/contract is mostly defined

· abstract class or Java interface

· encapsulation comes for free
· changing data representation does not affect users of data type
· changing implementations does not affect users of the data type

21



abstract data types

why use ADTs?

good ADTs
· provide a model of real things (abstraction)
· capture the essence of the real things

· the data

· capture the fundamental behaviour/operation of the real things
· the operations on the data

· will lead to the interface/contract for the actual data type

when creating data types from ADTs
· interface/contract is mostly defined

· abstract class or Java interface

· encapsulation comes for free
· changing data representation does not affect users of data type
· changing implementations does not affect users of the data type

21



abstract data types

why use ADTs?

good ADTs
· provide a model of real things (abstraction)
· capture the essence of the real things

· the data

· capture the fundamental behaviour/operation of the real things
· the operations on the data

· will lead to the interface/contract for the actual data type

when creating data types from ADTs
· interface/contract is mostly defined

· abstract class or Java interface

· encapsulation comes for free
· changing data representation does not affect users of data type
· changing implementations does not affect users of the data type

21



abstract data types

all the basic container ADTs are implemented in Java
(some have multiple implementations)

· list −→ ArrayList<T>, LinkedList<T>

· priority queue −→ PriorityQueue<T>

· set −→ HashSet<T>, TreeSet<T>

· dictionary −→ Dictionary<K,V>

22



abstract data types

let’s implement a string list ADT

x0,x1, . . . ,xn−1

data
· an ordered collection of strings

operations
· size() - returns the number of strings in the list n

· get(i) - returns string at given position xi

· set(i, s) - replaces element at given position with given data xi = s

· add(i, s) - adds a string at a given position in the list
· make a hole by shifting elements and insert in the hole

· remove(i) - removes and returns the element in the given position
· remove the item and then close the resulting gap

23



linked lists
a linked list is a sequence of nodes

a node stores data and a reference to the next node in the sequence
(or indicates that that there is no next node)

the head of the linked list is the first node and the tail is the last

note: the diagram represents a linked list with four nodes.

24



some review slides
(in progress)

25



abstract...

· abstract methods
· a method declared without a definition
· public abstract int foo(String[] in);
· forces the class to be abstract as well
· cannot be final

· abstract classes
· cannot be instantiated
· may or may not contain abstract methods
· are valid reference types and can be subclassed
· cannot be final

· concrete classes
· all methods (declared or inherited) must be defined
· can be instantiated (all objects other than arrays are instantiations of
concrete classes)

· is a valid data reference type

26



final...

· final attributes
· value cannot be changed once it is defined
· must be defined in constructor or initialization block
· primitive data types, strings and immutable data types are constants

· final methods
· cannot be overridden
· cannot be abstract

· final classes
· cannot be extended
· cannot be abstract

27



access modifiers...
modifier class package subclass world
public 3 3 3 3

protected 3 3 3 7

none (default) 3 3 7 7

private 3 7 7 7

· everything is accessible from within the class
· a class in the same package has access to everything except private
members

· a subclass has access to public and protected members
· everyone else only has access to public members

28



arrays...

an array is a container that store a collection of items of the same type

int[] intArray; // variable declaration

intArray = new intArray[12]; // allocation of memory in heap for array

intArray[0] = 13; //
... // population of the array with data
intArray[11] = 163; //

When you declare an array variable you can also initialize it using {...}.
This only works when you declare the variable.

/* array declaration, allocation and initialization */
int[] intArray = {1,3,5,7,9};

/* all of these are equivalent */
String[] words = {"cat", "dog", "eel"};
String[] words = new String[]{"cat", "dog", "eel"};
String[] words = new String[3]{"cat", "dog", "eel"};

29



arrays

30



creation and initialization
an array is a container that store a collection of items of the same type

int[] intArray; // variable declaration

intArray = new intArray[12]; // allocation of memory in heap for array

intArray[0] = 13; //
... // population of the array with data
intArray[11] = 163; //

When you declare an array variable you can also initialize it using {...}.
This only works when you declare the variable.

/* array declaration, allocation and initialization */
int[] intArray = {1,3,5,7,9};

/* all of these are equivalent */
String[] words = {"cat", "dog", "eel"};
String[] words = new String[]{"cat", "dog", "eel"};
String[] words = new String[3]{"cat", "dog", "eel"};

31



partially filled array

sometimes it is useful to have an array that is not completely filled

/* allocate memory to store 10 ints */
Integer[] numbers = new Integer[10];

/* partially fill the array */
numbers[0] = 1;
numbers[1] = 2;
numbers[2] = 4;
numbers[3] = 8;

when we use a partially filled array there are two things we need to keep
track of when using the array

· the capacity of the array. This tells us how many things the array
can possibly store. The length attribute of an array tells us this.

· the size of the array. This is the number of things (data) stored in
the array. We will need to have a variable (attribute) to manually
keep track of this.

32



partially filled array

sometimes it is useful to have an array that is not completely filled

/* allocate memory to store 10 ints */
Integer[] numbers = new Integer[10];
int size = 0; // number of ints in the array

/* partially fill the array */
numbers[0] = 1;
numbers[1] = 2;
numbers[2] = 4;
numbers[3] = 8;
size = 4; // we need to update this as we add/remove from the array

there are several ways that we can keep our data in the array

33


	Welcome

