Day 7

COMP1006/1406
Summer 2016

M. Jason Hinek
Carleton University

today's agenda

» assignments

» Assignment 4 is out and due on Tuesday

v

a quick look back
» abstract data types

v

linked lists

» copying data structures

» shallow copy
» deep copy

> binary trees

last time...

an abstract data type or ADT is data and operations on that data
that are precisely specified independent of any implementation

the operations may or may not have efficiency guarantees
a data structure is a systematic approach to storing and accessing
data so that it can be used efficiently for a specific purpose

a data structure is the implementation of an ADT

real world — ADT — data structure (class)

last time...

we saw several abstract data types

> list

» stack

> queue

> priority queue

> set

v

dictionary

now let's look at

linked lists (again)

now let's look at

copying data

What does this method do?

public static int mystery(int[] numbers){

int n = numbers.length;
for(int i=1; i<n; i+=1){
numbers[i] = Math.max(numbers[i], numbers[i-1]);
}
return numbers[n-1];

}

How would you write the contract for this method?

> pre-conditions
» post-conditions

» side effects

So what happened here?

public static int mystery(int[] numbers){
/* numbers = input_argument_numbers; */
int n = numbers.length;
for(int i=1; i<n; i+=1){

numbers[i] = Math.max(numbers[i], numbers[i-1]);

}
return numbers[n-1];

}

the method has three variables when it is called (in its activation record)
» numbers is an input parameter

» n is a local variable to the method

» i is a local variable to the method (scope is restricted to for loop)

Java passes input arguments by value. when mystery is called, the
input parameter numbers is assigned the value of the input

So what happened here?

public static int mystery(int[] numbers){
/* numbers = input_argument_numbers; */
int n = numbers.length;
for(int i=1; i<n; i+=1){
numbers[i] = Math.max(numbers[i], numbers[i-1]);
¥

return numbers[n-1];

when Java assigns the input parameter variable it uses a shallow copy.

the assigment operator = always performs a shallow copy. For reference
data types, = copies the reference (and not the data of the object)

let's trace through the memory model

public static int mystery(int[] numbers){
/* numbers = input_argument_numbers; */
int n = numbers.length;
for(int i=1; i<n; i+=1){
numbers[i] = Math.max(numbers[i], numbers[i-1])
¥

return numbers[n-1];

public static void main(String[] args){
int[] n = new int[]{1,3,6,2,-10,20,10};
int m = mystery(n);

}

>

10

Shallow versus Deep copy

a shallow copy of reference data types simply copies the reference.

Student one = new Student("cat", 12332);
Student two = one; // shallow copy of student object

After the shallow copy, the variables one and two are now aliases of each
other. They each refer/point to the same place in memory.

two.setName ("dog") ;
System.out.println(one.getName()); // outputs "dog"

With aliases, changing the data of one will change the data of the other.
This is sometimes the behaviour you want and sometimes not.
The assignment operator = always does a shallow copy.

When passing objects into a function Java always does a shallow copy.
(other languages may be different)

11

Shallow versus Deep copy

a deep copy makes a copy of all the data in the object.

Student one = new Student("cat", 12332);

Student two = new Student();

two.setName(one.getName()); // manual deep copy
two.setID(one.getID()); // of a student object

one and two have the same data but are not aliases of each other.
Changing the data of one has no affect on the other.

After a deep copy there should be no shared memory
(except for Strings or other immuatable data)

with a shallow copy one == two is true and one.equals(two) is likely false*

with a deep copy one == two is false and one.equals(two) is likely true*

*Assuming a good definition of .equals

12

Shallow versus Deep copy

public class Student{ public class Course{
String name; String name;
int id; String semester;
Date dob; String instructor;
Course[] courses; String grade;

} }

How would you do a deep copy of a Student object?
public Student deepCopy(){...}

13

now let's look at

binary trees

14

binary trees

a binary tree is another abstract data type

15

	Welcome

