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today’s agenda
· assignments

· Assignment 4 is out and due on Tuesday

· Bugs and Exception handling
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Bugs...

often use the word bug when there is a problem with our program

· bug is an error in our code (or hardware)

· debugging is a methodical process of finding and reducing the
number of bugs
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Bugs...

essentially 3 types of bugs/errors

· compile errors

· program does not compile but compiler tells you why
· syntax errors, type mismatch errors, ...
· these are your fault

· runtime errors

· cannot be determined at compile time
· sometimes require re-design of code
· these may or may not be your fault

· logical errors

· non-syntax mistakes in your code
· Java cannot detect or explain these errors
· may be very hard to find...
· these are definitely your fault
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Bugs...

· first we need to discover that a bug exists

· compile errors are found for free?

xkcd - 303
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Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?
· test, test, test, ...

· println is your friend

· next we need to find in your code where they occur

· JVM might tell you where code crashed (runtime error)
· observable error may have been caused elsewhere though...
· play computer! backtrack...
· might be easy or hard

· next we fix the bug

· if we know exactly where the bugs originates, often easy to fix
· serious bugs may require rethinking your code/objects
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Bugs...

part of the problem is that we don’t live in a perfect world...

· people do not follow API specifications (preconditions)

· people do weird things with your code...

· files get corrupted

you have no control over how people use your code
you have no control over the universe your code is running in

· need to write robust code

· robustness is the ability of the code to cope with errors during
execution and cope with erroneous input (from wiki)
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Bugs...

we could write code to check for all possibilities in our code

· error-checking is code added to your code to look for bad data

· error-handling is what you do when bad data is found

=⇒ everything needs to be an Object

in Java we use Exceptions...
· an Exception is an error that occurs in your code

· Exception Handling is what you do when an exception is found

goal of using exceptions
· you want your program to die gracefully

· you want to program to recover from bad data if possible
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Exceptions...

in Java, exceptions are objects

· the JVM automatically does this, or

· you explicitly do this in your code, or

· another method will explicitly do this

in Java, thrown exceptions are always caught
· explicitly caught by your code, or

(graceful)

· delegated to someone else to be caught, or

(potentially graceful)

· caught by the JVM if everyone delegates

(ugly)
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Exceptions...

in Java, exceptions are objects

Error Class
· unrecoverable errors

· java.lang.StackOverflowError

· java.lang.OutOfMemoryError

· you do not generally catch these yourself
(you fix your code so it doesn’t happen again!)
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Exceptions...

in Java, exceptions are objects

Exception Class
· less severe errors (we might be able to recover from these)
· there are checked and unchecked exceptions

· checked exceptions (Exception Class)

· compiler checks that these are explicitly caught
(if there is a throw there must be a catch)

· IllegalAccessException (try to violate access modifier)
FileNotFoundException (file is not found)

· unchecked exceptions (RuntimeException subclass)

· compiler does not check for a catch
(typically left for JVM to crash program)

· you should rethink your code to avoid these...
· ArtithmeticException (divide by zero for example)
NullpointerException
IndexOutOfBoundsException
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Exceptions...
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let’s take a break...
for 1.2 minutes
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Exceptions...

new Java keywords

· throws
· used in method declaration
· says that this method is delegating this exception

· try/catch/finally
· used to execute code and handle exceptions thrown
· "try" to execute this code...
"catch" any thrown exceptions and handle them
"finally" execute some code after everything is done

· throw
· explicitly throw an exception
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Throws
void openFile(String fname) throws java.io.FileNotFoundException{
...
}

tells the compiler that this method might

· explicitly throw a java.io.FileNotFoundException object

or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

...
...

...
explicitly throw a java.io.FileNotFoundException object
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Throws
void openFile(String fname) throws java.io.FileNotFoundException{
...
}

let’s look at an example
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Try/Catch

· use throws to delegate exception handling

· use try and catch to handle the exception yourself

try{
block of code to try

}
catch(Exception e){

block of code
to execute if exception is caught

}

catch(RuntimeException re){ Note: this won’t
block of code compile
to execute if exception is caught

}
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Try/Catch

· use throws to delegate exception handling

· use try and catch to handle the exception yourself

let’s look at the same example...
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Try/Catch

order matters! class hierarchy matters!

java.lang.Object
↑

java.lang.Throwable
↑

java.lang.Exception
↑

java.io.IOException
↑

java.io.FileNotFoundException
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Try/Catch

try{
block of code to try

}
catch(IOException ioe){
block of code to
execute if exception
thrown

}
catch(RuntimeException re){
block of code to
execute if exception
thrown

}
catch(Exception e){
block of code to
execute if exception
thrown

}

{
block of code to try

}
if (IOException is thrown){
block of code to
execute if exception
thrown

}
else if (RuntimeException){
block of code to
execute if exception
thrown

}
else if (Exception){
block of code to
execute if exception
thrown

}
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Try/Catch

order matters! class hierarchy matters!

Object
↑

Throwable
↑

Exception
↑

java.io.IOException
↑

java.io.FileNotFoundException
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Try/Catch/Finaly

· try executes a block of code

· if exception thrown, catch it and handle it

· after try and possibly catch code executes, we finally execute
some finishing code

try{
block of code to try

}
catch(Throwable e){

block of code
to execute if exception is caught

}

finally{ // like a funny else
block of code to execute
REGARDLESS of what happens above

}
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Throw
throw is the mechanism to explicitly throw an exception.

· throw new Exception("something bad here...");
creates a new Exception object and throws it

· throw e;
throws an existing exception
(e must be a Throwable object )
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Making Your Own Exceptions

you create your own custom exceptions by extending an appropriate
Thowable class
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Making Your Own Exceptions

you create your own custom exceptions by extending an appropriate
Thowable class

public class BadCardRankException extends Exception {

public BadCardRankException(){
super("Rank of card is invalid");

}
}
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Throwable
the Throwable class is the root of all exceptions in Java

· toString()
· returns short description of this object

· getMessage()
· returns the message as input with the constructor

· printStackTrace()
· prints the stack trace to standard error
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