
Day 8

COMP1006/1406
Summer 2016

M. Jason Hinek
Carleton University



today’s agenda
· assignments

· Assignment 4 is out and due on Tuesday

· Bugs and Exception handling

2



Bugs...

often use the word bug when there is a problem with our program

· bug is an error in our code (or hardware)

· debugging is a methodical process of finding and reducing the
number of bugs

3



Bugs...

· bug is an error in our code (or hardware)

· debugging is a methodical process of finding and reducing the
number of bugs

3



Bugs...

· bug is an error in our code (or hardware)

· debugging is a methodical process of finding and reducing the
number of bugs

3



Bugs...

· bug is an error in our code (or hardware)

· debugging is a methodical process of finding and reducing the
number of bugs

3



Bugs...

essentially 3 types of bugs/errors

· compile errors

· program does not compile but compiler tells you why
· syntax errors, type mismatch errors, ...
· these are your fault

· runtime errors

· cannot be determined at compile time
· sometimes require re-design of code
· these may or may not be your fault

· logical errors

· non-syntax mistakes in your code
· Java cannot detect or explain these errors
· may be very hard to find...
· these are definitely your fault

4



Bugs...

essentially 3 types of bugs/errors

· compile errors

· program does not compile but compiler tells you why
· syntax errors, type mismatch errors, ...
· these are your fault

· runtime errors

· cannot be determined at compile time
· sometimes require re-design of code
· these may or may not be your fault

· logical errors

· non-syntax mistakes in your code
· Java cannot detect or explain these errors
· may be very hard to find...
· these are definitely your fault

4



Bugs...

essentially 3 types of bugs/errors

· compile errors
· program does not compile but compiler tells you why
· syntax errors, type mismatch errors, ...

· these are your fault

· runtime errors

· cannot be determined at compile time
· sometimes require re-design of code
· these may or may not be your fault

· logical errors

· non-syntax mistakes in your code
· Java cannot detect or explain these errors
· may be very hard to find...
· these are definitely your fault

4



Bugs...

essentially 3 types of bugs/errors

· compile errors
· program does not compile but compiler tells you why
· syntax errors, type mismatch errors, ...

· these are your fault

· runtime errors
· cannot be determined at compile time
· sometimes require re-design of code

· these may or may not be your fault

· logical errors

· non-syntax mistakes in your code
· Java cannot detect or explain these errors
· may be very hard to find...
· these are definitely your fault

4



Bugs...

essentially 3 types of bugs/errors

· compile errors
· program does not compile but compiler tells you why
· syntax errors, type mismatch errors, ...

· these are your fault

· runtime errors
· cannot be determined at compile time
· sometimes require re-design of code

· these may or may not be your fault

· logical errors
· non-syntax mistakes in your code
· Java cannot detect or explain these errors
· may be very hard to find...

· these are definitely your fault

4



Bugs...

essentially 3 types of bugs/errors

· compile errors
· program does not compile but compiler tells you why
· syntax errors, type mismatch errors, ...
· these are your fault

· runtime errors
· cannot be determined at compile time
· sometimes require re-design of code

· these may or may not be your fault

· logical errors
· non-syntax mistakes in your code
· Java cannot detect or explain these errors
· may be very hard to find...

· these are definitely your fault

4



Bugs...

essentially 3 types of bugs/errors

· compile errors
· program does not compile but compiler tells you why
· syntax errors, type mismatch errors, ...
· these are your fault

· runtime errors
· cannot be determined at compile time
· sometimes require re-design of code
· these may or may not be your fault

· logical errors
· non-syntax mistakes in your code
· Java cannot detect or explain these errors
· may be very hard to find...

· these are definitely your fault

4



Bugs...

essentially 3 types of bugs/errors

· compile errors
· program does not compile but compiler tells you why
· syntax errors, type mismatch errors, ...
· these are your fault

· runtime errors
· cannot be determined at compile time
· sometimes require re-design of code
· these may or may not be your fault

· logical errors
· non-syntax mistakes in your code
· Java cannot detect or explain these errors
· may be very hard to find...
· these are definitely your fault

4



Bugs...

· first we need to discover that a bug exists

· compile errors are found for free?

xkcd - 303

5



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?

xkcd - 303

5



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?

xkcd - 303

5



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?
· test, test, test, ...

· println is your friend

· next we need to find in your code where they occur

· JVM might tell you where code crashed (runtime error)
· observable error may have been caused elsewhere though...
· play computer! backtrack...
· might be easy or hard

· next we fix the bug

· if we know exactly where the bugs originates, often easy to fix
· serious bugs may require rethinking your code/objects

6



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?
· test, test, test, ...
· println is your friend

· next we need to find in your code where they occur

· JVM might tell you where code crashed (runtime error)
· observable error may have been caused elsewhere though...
· play computer! backtrack...
· might be easy or hard

· next we fix the bug

· if we know exactly where the bugs originates, often easy to fix
· serious bugs may require rethinking your code/objects

6



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?
· test, test, test, ...
· println is your friend

· next we need to find in your code where they occur

· JVM might tell you where code crashed (runtime error)
· observable error may have been caused elsewhere though...
· play computer! backtrack...
· might be easy or hard

· next we fix the bug

· if we know exactly where the bugs originates, often easy to fix
· serious bugs may require rethinking your code/objects

6



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?
· test, test, test, ...
· println is your friend

· next we need to find in your code where they occur
· JVM might tell you where code crashed (runtime error)

· observable error may have been caused elsewhere though...
· play computer! backtrack...
· might be easy or hard

· next we fix the bug

· if we know exactly where the bugs originates, often easy to fix
· serious bugs may require rethinking your code/objects

6



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?
· test, test, test, ...
· println is your friend

· next we need to find in your code where they occur
· JVM might tell you where code crashed (runtime error)
· observable error may have been caused elsewhere though...

· play computer! backtrack...
· might be easy or hard

· next we fix the bug

· if we know exactly where the bugs originates, often easy to fix
· serious bugs may require rethinking your code/objects

6



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?
· test, test, test, ...
· println is your friend

· next we need to find in your code where they occur
· JVM might tell you where code crashed (runtime error)
· observable error may have been caused elsewhere though...
· play computer! backtrack...

· might be easy or hard

· next we fix the bug

· if we know exactly where the bugs originates, often easy to fix
· serious bugs may require rethinking your code/objects

6



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?
· test, test, test, ...
· println is your friend

· next we need to find in your code where they occur
· JVM might tell you where code crashed (runtime error)
· observable error may have been caused elsewhere though...
· play computer! backtrack...
· might be easy or hard

· next we fix the bug

· if we know exactly where the bugs originates, often easy to fix
· serious bugs may require rethinking your code/objects

6



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?
· test, test, test, ...
· println is your friend

· next we need to find in your code where they occur
· JVM might tell you where code crashed (runtime error)
· observable error may have been caused elsewhere though...
· play computer! backtrack...
· might be easy or hard

· next we fix the bug

· if we know exactly where the bugs originates, often easy to fix
· serious bugs may require rethinking your code/objects

6



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?
· test, test, test, ...
· println is your friend

· next we need to find in your code where they occur
· JVM might tell you where code crashed (runtime error)
· observable error may have been caused elsewhere though...
· play computer! backtrack...
· might be easy or hard

· next we fix the bug
· if we know exactly where the bugs originates, often easy to fix

· serious bugs may require rethinking your code/objects

6



Bugs...

· first we need to discover that a bug exists
· compile errors are found for free?
· test, test, test, ...
· println is your friend

· next we need to find in your code where they occur
· JVM might tell you where code crashed (runtime error)
· observable error may have been caused elsewhere though...
· play computer! backtrack...
· might be easy or hard

· next we fix the bug
· if we know exactly where the bugs originates, often easy to fix
· serious bugs may require rethinking your code/objects

6



Bugs...

part of the problem is that we don’t live in a perfect world...

· people do not follow API specifications (preconditions)

· people do weird things with your code...

· files get corrupted

you have no control over how people use your code
you have no control over the universe your code is running in

· need to write robust code

· robustness is the ability of the code to cope with errors during
execution and cope with erroneous input (from wiki)

7



Bugs...

we could write code to check for all possibilities in our code

· error-checking is code added to your code to look for bad data

· error-handling is what you do when bad data is found

=⇒ everything needs to be an Object

in Java we use Exceptions...
· an Exception is an error that occurs in your code

· Exception Handling is what you do when an exception is found

goal of using exceptions
· you want your program to die gracefully

· you want to program to recover from bad data if possible

8



Exceptions...

in Java, exceptions are objects

· the JVM automatically does this, or

· you explicitly do this in your code, or

· another method will explicitly do this

in Java, thrown exceptions are always caught
· explicitly caught by your code, or

(graceful)

· delegated to someone else to be caught, or

(potentially graceful)

· caught by the JVM if everyone delegates

(ugly)

9



Exceptions...

in Java, exceptions are objects

· the JVM automatically does this, or

· you explicitly do this in your code, or

· another method will explicitly do this

in Java, thrown exceptions are always caught
· explicitly caught by your code, or (graceful)

· delegated to someone else to be caught, or (potentially graceful)

· caught by the JVM if everyone delegates (ugly)

9



Exceptions...

in Java, exceptions are objects

Error Class
· unrecoverable errors

· java.lang.StackOverflowError

· java.lang.OutOfMemoryError

· you do not generally catch these yourself
(you fix your code so it doesn’t happen again!)

10



Exceptions...

in Java, exceptions are objects

Exception Class
· less severe errors (we might be able to recover from these)
· there are checked and unchecked exceptions

· checked exceptions (Exception Class)

· compiler checks that these are explicitly caught
(if there is a throw there must be a catch)

· IllegalAccessException (try to violate access modifier)
FileNotFoundException (file is not found)

· unchecked exceptions (RuntimeException subclass)

· compiler does not check for a catch
(typically left for JVM to crash program)

· you should rethink your code to avoid these...
· ArtithmeticException (divide by zero for example)
NullpointerException
IndexOutOfBoundsException

11



Exceptions...

in Java, exceptions are objects

Exception Class
· less severe errors (we might be able to recover from these)
· there are checked and unchecked exceptions

· checked exceptions (Exception Class)
· compiler checks that these are explicitly caught
(if there is a throw there must be a catch)

· IllegalAccessException (try to violate access modifier)
FileNotFoundException (file is not found)

· unchecked exceptions (RuntimeException subclass)

· compiler does not check for a catch
(typically left for JVM to crash program)

· you should rethink your code to avoid these...
· ArtithmeticException (divide by zero for example)
NullpointerException
IndexOutOfBoundsException

11



Exceptions...

in Java, exceptions are objects

Exception Class
· less severe errors (we might be able to recover from these)
· there are checked and unchecked exceptions

· checked exceptions (Exception Class)
· compiler checks that these are explicitly caught
(if there is a throw there must be a catch)

· IllegalAccessException (try to violate access modifier)
FileNotFoundException (file is not found)

· unchecked exceptions (RuntimeException subclass)
· compiler does not check for a catch
(typically left for JVM to crash program)

· you should rethink your code to avoid these...
· ArtithmeticException (divide by zero for example)
NullpointerException
IndexOutOfBoundsException

11



Exceptions...

12



let’s take a break...
for 1.2 minutes

13



Exceptions...

new Java keywords

· throws
· used in method declaration
· says that this method is delegating this exception

· try/catch/finally
· used to execute code and handle exceptions thrown
· "try" to execute this code...
"catch" any thrown exceptions and handle them
"finally" execute some code after everything is done

· throw
· explicitly throw an exception

14



Throws
void openFile(String fname) throws java.io.FileNotFoundException{
...
}

tells the compiler that this method might

· explicitly throw a java.io.FileNotFoundException object

or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

...
...

...
explicitly throw a java.io.FileNotFoundException object

15



Throws
void openFile(String fname) throws java.io.FileNotFoundException{
...
}

tells the compiler that this method might

· explicitly throw a java.io.FileNotFoundException object

or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

...
...

...
explicitly throw a java.io.FileNotFoundException object

15



Throws
void openFile(String fname) throws java.io.FileNotFoundException{
...
}

tells the compiler that this method might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object

or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

...
...

...
explicitly throw a java.io.FileNotFoundException object

15



Throws
void openFile(String fname) throws java.io.FileNotFoundException{
...
}

tells the compiler that this method might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object

or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

...
...

...
explicitly throw a java.io.FileNotFoundException object

15



Throws
void openFile(String fname) throws java.io.FileNotFoundException{
...
}

tells the compiler that this method might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object

or
calls a method that might

...
...

...
explicitly throw a java.io.FileNotFoundException object

15



Throws
void openFile(String fname) throws java.io.FileNotFoundException{
...
}

tells the compiler that this method might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object

or
calls a method that might

...
...

...
explicitly throw a java.io.FileNotFoundException object

15



Throws
void openFile(String fname) throws java.io.FileNotFoundException{
...
}

tells the compiler that this method might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

...
...

...
explicitly throw a java.io.FileNotFoundException object

15



Throws
void openFile(String fname) throws java.io.FileNotFoundException{
...
}

tells the compiler that this method might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

· explicitly throw a java.io.FileNotFoundException object
or
calls a method that might

...
...

...
explicitly throw a java.io.FileNotFoundException object

15



Throws
void openFile(String fname) throws java.io.FileNotFoundException{
...
}

let’s look at an example

16



Try/Catch

· use throws to delegate exception handling

· use try and catch to handle the exception yourself

try{
block of code to try

}
catch(Exception e){

block of code
to execute if exception is caught

}

catch(RuntimeException re){ Note: this won’t
block of code compile
to execute if exception is caught

}

17



Try/Catch

· use throws to delegate exception handling

· use try and catch to handle the exception yourself

try{
block of code to try

}
catch(Exception e){
block of code
to execute if exception is caught

}

catch(RuntimeException re){ Note: this won’t
block of code compile
to execute if exception is caught

}

17



Try/Catch

· use throws to delegate exception handling

· use try and catch to handle the exception yourself

try{
block of code to try

}
catch(Exception e){
block of code
to execute if exception is caught

}
catch(RuntimeException re){ Note: this won’t

block of code compile
to execute if exception is caught

}

17



Try/Catch

· use throws to delegate exception handling

· use try and catch to handle the exception yourself

let’s look at the same example...

18



Try/Catch

order matters! class hierarchy matters!

java.lang.Object
↑

java.lang.Throwable
↑

java.lang.Exception
↑

java.io.IOException
↑

java.io.FileNotFoundException

19



Try/Catch

order matters! class hierarchy matters!

Object
↑

Throwable
↑

Exception
↑

java.io.IOException
↑

java.io.FileNotFoundException

19



Try/Catch

try{
block of code to try

}
catch(IOException ioe){
block of code to
execute if exception
thrown

}
catch(RuntimeException re){
block of code to
execute if exception
thrown

}
catch(Exception e){
block of code to
execute if exception
thrown

}

{
block of code to try

}
if (IOException is thrown){
block of code to
execute if exception
thrown

}
else if (RuntimeException){
block of code to
execute if exception
thrown

}
else if (Exception){
block of code to
execute if exception
thrown

}

20



Try/Catch

order matters! class hierarchy matters!

Object
↑

Throwable
↑

Exception
↑

java.io.IOException
↑

java.io.FileNotFoundException

21



Try/Catch/Finaly

· try executes a block of code

· if exception thrown, catch it and handle it

· after try and possibly catch code executes, we finally execute
some finishing code

try{
block of code to try

}
catch(Throwable e){

block of code
to execute if exception is caught

}

finally{ // like a funny else
block of code to execute
REGARDLESS of what happens above

}

22



Try/Catch/Finaly

· try executes a block of code

· if exception thrown, catch it and handle it

· after try and possibly catch code executes, we finally execute
some finishing code

try{
block of code to try

}
catch(Throwable e){
block of code
to execute if exception is caught

}

finally{ // like a funny else
block of code to execute
REGARDLESS of what happens above

}

22



Try/Catch/Finaly

· try executes a block of code

· if exception thrown, catch it and handle it

· after try and possibly catch code executes, we finally execute
some finishing code

try{
block of code to try

}
catch(Throwable e){
block of code
to execute if exception is caught

}
finally{ // like a funny else
block of code to execute
REGARDLESS of what happens above

}
22



Throw
throw is the mechanism to explicitly throw an exception.

· throw new Exception("something bad here...");
creates a new Exception object and throws it

· throw e;
throws an existing exception
(e must be a Throwable object )

23



Throw
throw is the mechanism to explicitly throw an exception.

· throw new Exception("something bad here...");
creates a new Exception object and throws it

· throw e;
throws an existing exception
(e must be a Throwable object )

23



Throw
throw is the mechanism to explicitly throw an exception.

· throw new Exception("something bad here...");
creates a new Exception object and throws it

· throw e;
throws an existing exception
(e must be a Throwable object )

23



Making Your Own Exceptions

you create your own custom exceptions by extending an appropriate
Thowable class

24



Making Your Own Exceptions

you create your own custom exceptions by extending an appropriate
Thowable class

24



Making Your Own Exceptions

you create your own custom exceptions by extending an appropriate
Thowable class

public class BadCardRankException extends Exception {

public BadCardRankException(){
super("Rank of card is invalid");

}
}

25



Throwable
the Throwable class is the root of all exceptions in Java

· toString()
· returns short description of this object

· getMessage()
· returns the message as input with the constructor

· printStackTrace()
· prints the stack trace to standard error

26


	Welcome

