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today’s agenda
· assignments

· Only the Project is left!

· Recursion Again

· Efficiency
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last time...
recursion... binary trees...
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binary trees

A binary tree is
· empty (base case), or
· an item and two binary trees (called left and right)

public class BTNode{
String data; // or int data; etc..
BTNode left;
BTNode right;

}

We may use a BinaryTree class that is a reference to the root of the tree or we can
just represent binary trees with a BTNode

public class BinaryTree{
BTNode root;
int size; // maybe store the size

}
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binary trees

A binary tree traversal involves two recursive calls (one for each child).
The convention is to visit the left child before the right child.

public void traverse(BTNode tree){
if(tree==null) return;

// do something with tree.data // preorder traversal

traverse( tree.root.left );

// do something with tree.data // inorder traversal

traverse( tree.root.right );

// do something with tree.data // postorder traversal

}
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binary trees

Example : count the nodes in a binary tree
public int size(BTNode tree){

/* just use a node for a tree in this example */

/* base case : empty tree has no nodes */
if(root==null) return 0;

/* recursive case : size is 1 plus size of subtrees */
return 1 + size(root.left) + size(root.right);

}
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binary trees

Example : sum the data values in a binary tree (assume nodes store ints)
public int sumOfTree(BinaryTree tree){

/* call recursive helper function */
return sumHelper(tree.root);

}

public static int sumHelper(BTNode root){
/* base case : empty tree has no values */
if(root==null) return 0;

/* recursive case : add current node to sum of subtrees */
return root.data + sumHelper(root.left) + sumHelper(root.right);

}
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binary trees

Example : find the max value in a binary tree (assume nodes store ints)
public int maxOfTree(BinaryTree tree){

/* precondition : tree is not null */

return maxHelper(tree.root, tree.root.data);
}

public static int maxHelper(BTNode root, int big){
/* precondition : big is the max value seen so far */

/* base case : return biggest value seen so far */
if(root==null) return big;

/* recursive case */
big = Math.max(big, root.data);
big = Math.max(big, maxHelper(root.left, big));
big = Math.max(big, maxHelper(root.right, big));

return big;
}
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Tail Recursion
There is overhead involved when using recursion.

· each time a function is called a new activation record is pushed to
the stack (this costs time and uses up stack space)

Consider the two recursive functions

int sum1(LinkedList list){
if(list.size() == 0){ return 0; }
return list.first() + sum1(list.rest());

}

int sum2(LinkedList list){
return sumHelper(list, 0);

}

int sumHelper(LinkedList list, int accumulator){
if(list.size()==0){ return accumulator; }
return sumHelper(list.rest(), accumulator+list.first()));

}
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Tail Recursion
The helper function (sumHelper) is an example of tail recursion.
In tail recursion, the very last operation of the method is simply a
recursive call to itself. If the function returns a value then the return
value is simply the value returned from the recursive call.

Remember that each time a function is called a new activation record is
pushed to the stack (this costs time and uses up stack space). For a
function like sumHelper this is a waste of resources.

Some languages (or compilers) can optimize code using tail recursion by
only creating a single activation record on the stack and reusing it for
each recursive call. This saves time and space. Scheme is a language
that guarantees optimized tail recursion. You do not need to worry about
running out of stack space when using recursion in Scheme. (why?)
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Last Quiz!
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Efficiency

how do we know if a program or a method is efficient?
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Efficiency

how do we know if a program or a method is efficient?

· count basic operations (such as comparisons or swaps)
· as a function of input size (typically n)
· length of array, number of nodes in a linked list or tree, size of set

· which input do we consider?
· worst case

33 (typical)

· average case

3 (sometimes hard to determine)

· best case

7(3) (winning the lottery)

· use big-O notation for runtime

· if number of operations is 3n3+8n2−1000n+3

→ O(n3)

· if number of operations is n2

100000 +800000n

→ O(n2)

· ignore lower "order" terms and constants
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Efficiency

there are several common complexities (runtimes)

· constant ∼ c O(1)

· logarithmic ∼ c log(n) O(logn)

· linear ∼ cn O(n)

· linearithmic ∼ cn log(n) O(n logn)

· quadratic ∼ cn2 O(n2)

· cubic ∼ cn3 O(n3)

· exponential ∼ c2n O(2n)
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Efficiency

we need to be very careful how we interpret big-O runtimes.

· big-O is an asymptotic result
· it only holds for big input values

· in practice the ignored terms (constants and lower order) can matter
· if algorithm A has runtime O(n2) and algorithm B has runtime O(n)
which is faster?

· algorithms with the same big-O may behave differently
· n3 and 1000000n3+10000000000000n2 are both O(n3)

· it does give us valuable information about the runtime behaviour
· it tells us the growth rate of the runtime
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Efficiency

what happens is we double the input size? (ignoring lower order terms)

T (n) T (2n) T(2n)
constant c

c T (n)

logarithmic c log(n)

c log(n) T (n)

linear cn

2cn 2T (n)

linearithmic cn log(n)

2cn log(n) 2T (n)

quadratic cn2

4cn2 4T (n)

cubic cn3

8cn3 8T (n)

exponential c2n

c22n 2nT (n)

what happens if we increase the input size by 1?

T (n) T (n+1) T(n+1)
linear cn cn T (n)
quadratic cn2 cn2 T (n)

exponential c2n c2n+1 2T (n)
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Searching

Searching is a fundamental operation in computer science

is there a difference if the data is unordered or ordered?

· unordered list

· when we find find the target we find the target
· how do we know if target is not in the list?
· we have to look at every element in the list...

O(n)

· ordered list

· can we use this extra information to help us?
· data stored in an array (ArrayList)

· binary search (eliminate 1/2 of search space with each comparison)
· O(log(n))

· data stored in a linked list?

· we have to walk through the list to look for the element
· O(n)

· how we store our data is important! (COMP2402)
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Arrays vs Linked Lists

let’s compare arrays and linked lists

array linked list
search an unsorted list

O(n) O(n)

search an sorted list

O(logn) O(n)

add/remove at front of list

O(n) O(1)

add/remove at back of list

O(1) O(1)

add/remove from arbitrary position

O(n) O(n)

access element in arbitrary position

O(1) O(n)

So which implementation of a list is better?
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Sorting

sorting is another fundamental operation in computer science

you should have seen some sorting algorithms in COMP1004/1405
(bubble sort, insertion sort, selection sort). These were all quadratric
sorting algorithms O(n2)

let’s try to do better. But instead of jumping into sorting let’s look at a
different problem and apply divide and conquer:

suppose we have two lists of numbers with n numbers in total

· how efficiently can we create a new list with all the numbers in
sorted order?

· does it matter that we have two lists?

no

· what if both lists were each sorted lists?

· a-ha!
· O(n)

· we have the merge algorithm

· O(n)
when merging two lists whose lengths add to n
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Recursive Sorting I

the merge algorithm takes two sorted lists and creates a single sorted list
with all the elements

merge(List a, List b):
list = new empty list
while a is not empty OR b is not empty

compare the first elements of a and b
remove the greater from its list and add to list

return list

Suppose your favourite sorting algorithm takes cn2 time to sort n
elements and merge takes n time.

· split the list in two
· sort each in time c(n/2)2 = 1

4cn
2

· merge the two sorted lists in linear time c ′n
· total time is 1

2cn
2+n (still O(n2) but better!)
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Recursive Sorting I

the mergesort algorithm recursively splits up the list until the lists are
small enough to sort (base case) and then merges the results. (assume
n= 2`)

· divide list of n numbers into n lists of one number (base case)

· call merge on pairs of single number lists
(giving 2-element sorted lists)

· call merge on pairs of 2-element sorted lists
(giving 4-element sorted lists)

· ...

· call merge on the two n/2-element sorted lists giving a single
n-element sorted list
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Recursive Sorting I

mergesort (assume n= 2`)

mergesort(list[1..n]):
if size of list is 1 then return list

left = mergesort( list.sublist(1,n/2) )
right = mergesort( list.sublist(n/2+1, n) )

return merge(left,right)
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Recursive Sorting I

the mergesort (assume n= 2`)
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left = mergesort( list.sublist(1,n/2) )
right = mergesort( list.sublist(n/2+1, n) )

return merge(left,right)

what is the runtime of this algorithm?

T (n)=
{
c n= 1
T (n/2)+T (n/2)+Merge(n) n> 1
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Recursive Sorting I

what is the runtime of the mergesort (suppose n= 2`)

T (n)
=T (n/2)+T (n/2)+M(n)
= 2T (n/2)+M(n)
= 2(2T (n/4)+M(n/2))︸ ︷︷ ︸

T (n/2)

+M(n)

= 2(2(2T (n/8)+M(n/4))︸ ︷︷ ︸
T (n/4)

+M(n/2))+M(n)

= ...
= 2`T (1)+2`−1M(n/2`−1)+·· ·+4M(n/4)+2M(n/2)+M(n)

↓ T (1)∼ c , M(x)∼ kx

= 2`c +2`−1k(n/2`−1)+·· ·+4k(n/4)+2k(n/2)+kn
= 2`c +`kn
= 2`c + log2(2`)kn
= nc + log2(n)kn
=O(n logn)
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Recursive Sorting I

what is the runtime of the mergesort (suppose n= 2`)

that was a bit traumatic...

let’s draw a picture instead
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Recursive Sorting II

the mergesort was efficient because merging two sorted lists is efficient.

let’s look at another problem on lists

problem: given a list ` and one element in the list α, can you partition
the list so that all elements before α are less than α and all elements
after α are greater than or equal to α?

12 3 -12 223 62 17 99 78 82 101 11
↓ α= 78

12 3 -12 62 17 11 78 223 99 82 101
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Recursive Sorting II

the quicksort method keeps partitioning lists and then concatenating
them back together

quicksort(list)
if size of list is 1 then return list

q := partition
left := elements in list < q
right := elements in list >= q

return quicksort(left) + {q} || quicksort(right)
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