MITACS 4th Annual Conference May 9, 2003 - Ottawa NAC

Computer Worms and the Telecommunications Infrastructure

Prof. Paul Van Oorschot (Carleton C.S.) Dr. Jean-Marc Robert (Alcatel Canada) Dr. Miguel Vargas Martin (Carleton C.S.)

Worm (November 2)

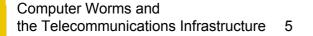
- software on one Internet machine
 - collected host, network and user info
 - broke into other machines
- replicated itself; replica continued likewise
- infected 10% of Internet machines (Unix variants)

Worm (November 2)

- software on one Internet machine
 - collected host, network and user info
 - broke into other machines
- replicated itself; replica continued likewise
- infected 10% of Internet machines (Unix variants)

Why important?

Morris Worm (Nov.2, 1988)


How was Morris Worm Possible?

- configuration error (Sendmail)
- weak passwords (dictionary size: 432)
 - (where are we today?)
- trusted connections *(.rhosts* file)
- buffer overflow (*finger* daemon)
 - feature of C; still #1 flaw per CERT
- diversity: one worm felled 10% of Internet
- was patch available? YES ... but

Sapphire/Slammer worm (Jan. 25, 2003)

- fastest in history doubling time: 8.5s
 - 90% of vulnerable hosts infected in 10 min
 - two orders magnitude faster than Code Red
 - hosts: 75K vs. 359K
- after 3 min: scanning rate 55M scans/s
- no malicious payload (would have been easy)

Sapphire/Slammer worm (cont d)

- buffer overflow: MSFT SQL server & desktop s/w
 - patch available: July 2002
 - only affected those behind on patches
 - single-packet worm
 - 376 bytes (404-byte UDP packet)
 - bandwidth limited (100 Mbps servers)

significant milestone in evolution of worms

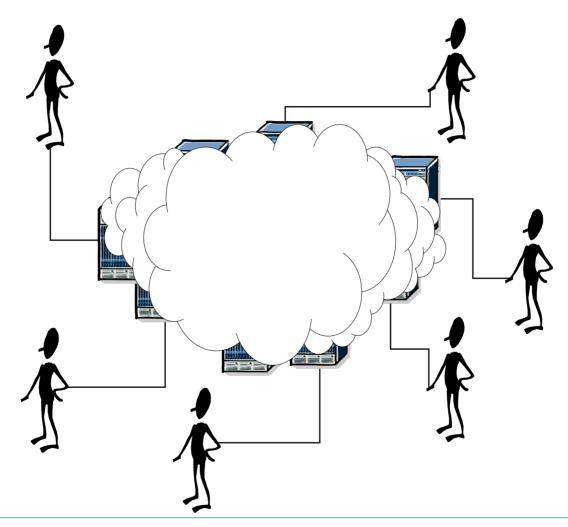
Trends - Patches

- more frequent than ever
- installed only by minority
- Red Queen syndrome:

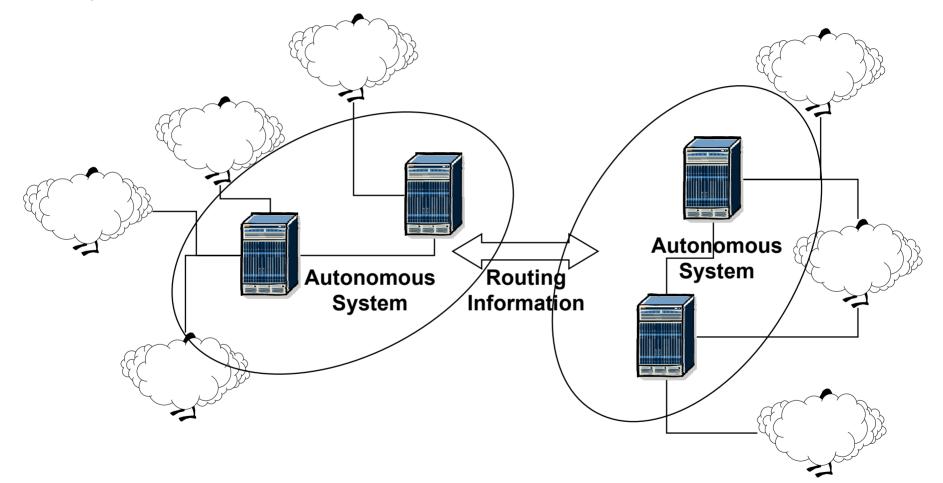
[Here] it takes all the running you can do just to keep in the same place

Trends (cont d)

- Warhol worms (15 minutes)
 - conference paper, Aug. 2002
 How to Own the Internet in your Spare Time
 - Slammer worm (Jan. 2003)
 - *flash worms* (10 s of seconds)
 - consider responses requiring human interaction


Computer Worms and the Telecommunications Infrastructure (Part

Jean-Marc Robert Ph.D. Alcatel R&I Security Group


ARCHITECTS OF AN INTERNET WORLD

Typical View of the Internet User point of view

Our View of the Internet Telcos point of view

Computer Worms and the Telecommunications Infrastructure 11 All rights

Survivability

is the ability of a system to fulfill its mission, in a timely manner, in the presence of attacks, failures, or accidents

Who is at Risk?

From the viewpoint of the telecommunication systems, there are two targets:

- The network equipment

 According to a report of the CERT Coordination Center of the CMU Software Engineering Institute, a recent attack trend is to target or to use infrastructure elements, such as routers.

- The *systems* connected to network equipment.

Denial-of-Service Attack Taxonomy

From the viewpoint of the telecommunication systems, the attacks can be divided into two groups:

- The *DoS-Victim attacks* correspond to attacks against the network equipment themselves
 - E.g. SYN Flood or Ping-of-Death against a router
- The *DoS-Carrier attacks* correspond to attacks against systems connected to network equipment
 - E.g. SYN Flood or Slammer against an end-user using resources at the network-level and at the end-user-level

Worms and Routing Infrastructure

Worms Target:

- Slammer \rightarrow MySQL
- Nimda \rightarrow IIS
- Code Red \rightarrow IIS

Why are they impacting the routing infrastructure?

Worms Potential Impact

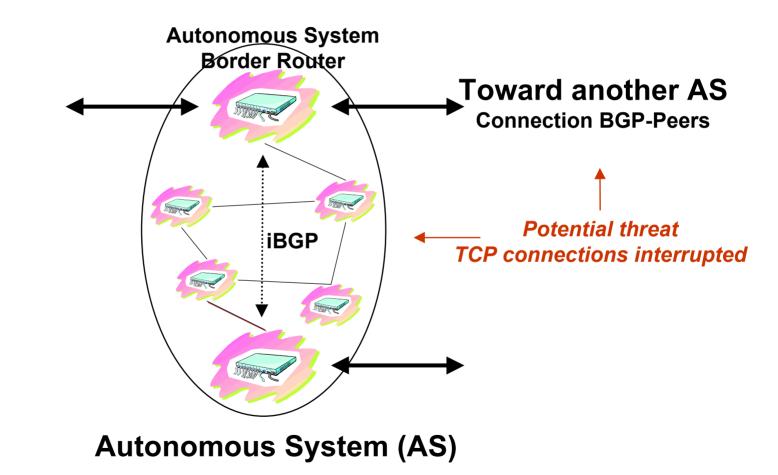
Due to some extreme conditions heavy traffic load routers are more sensitive to:

- Software vulnerabilities
- Resource exhaustion
 - CPU Overload
 - Buffer overflows
 - Memory exhaustion

Computer Worms and the Telecommunications Infrastructure 16 All rights reserved © 2003, Alcatel

But the Major Impact May Be Elsewhere

Traffic diversity i.e. many new flows


- Caching problem in routers \rightarrow CPU overload
- Non-existing routers \rightarrow ICMP storms

Instability in the routing information (???)

- The Border Gateway Protocol (BGP) is a routing protocol used to exchange information between Autonomous Systems

Routing Architecture

Computer Worms and the Telecommunications Infrastructure 18 All rights reserved © 2003, Alcatel

BGP (Potential) Instabilities

Instability observed under stress conditions

- Intra-AS flapping and routing failures
- High BGP message load
- Route computation \rightarrow CPU overload

Reason (?)

- Potential failures in the TCP connections between BGP peers
 - Forcing exchange of BGP Tables (~100,000 entries)

BGP (Potential) Instabilities

Unfortunately, only a few results have been published on this research area *and they are contradictory*

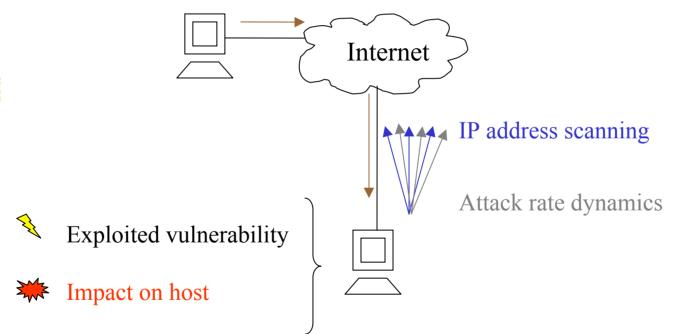
Problems

- Hard to simulate a complex system such as the Internet
- Hard to monitor automatically a complex system without any bias

Conclusion

The impact of worms on routing infrastructure shall be studied more thoroughly by the industry and by the academic community. For example, what are the real impact

- On the routing protocols
- On the congestion algorithms
- On the quality-of-service approaches An important step toward those objectives is a better understanding of the worm behavior

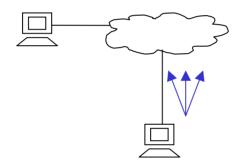

MITACS 4th Annual Conference May 9, 2003 - Ottawa NAC

Classification of Worms

Miguel Vargas Martin Digital Security Group School of Computer Science Carleton University

Characteristics of Worms

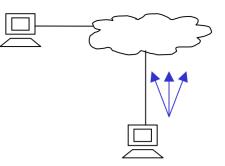
Propagation strategy


Carleton

Worms Studied

- 1 Morris 5 Code Red II
- 2 Sadmind 6 Nimda
- 3 Code Red v2 7 Slammer
- 4 Sircam 8 Code Red III

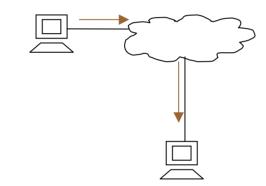
IP Address Scanning


random host related

local subnet probabilistic non-probabilistic

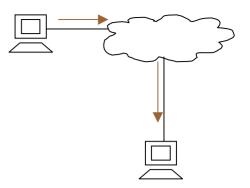
hitlist

permutation



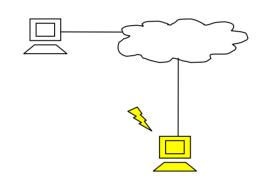
IP Address Scanning

	IP address scanning				
			local subnet		
worm	random	host related	probabilistic	non- probabilistic	
Morris	v	V		V	
Sadmind	v			V	
Code Red v2	v				
Sircam		V			
Code Red II	v		V		
Nimda	v	V	V		
Slammer	V				
Code Red III	V		V		


Propagation Nature

uniform payload central back-chaining autonomous

poly-morphic central back-chaining autonomous

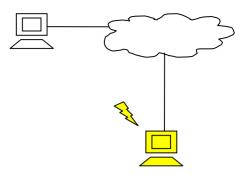


Propagation Nature

	propagation nature				
	uniform payload				
worm	central	back- chaining	auton- omous		
Morris		V	V		
Sadmind		V			
Code Red v2			v		
Sircam			v		
Code Red II			V		
Nimda	v	V	V		
Slammer			V		
Code Red III			V		

Exploited Vulnerability

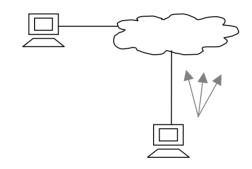
protocol


implementation

design

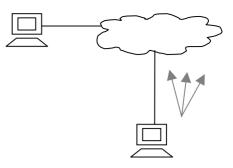
characteristics

misconfiguration/bad default setting



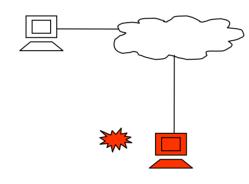
Exploited Vulnerability

	exploited vulnerability			
worm	implementation	configuration/ bad default settings		
Morris	sendmail, finger	. rhosts / weak password policy		
Sadmind	sadmind, IIS			
Code Red v2	IIS			
Sircam		network shares		
Code Red II	IIS			
Nimda	IIS, Code Red II and Sadmind backdoors	java script		
Slammer	SQL			
Code Red III	IIS			


Attack Rate Dynamics

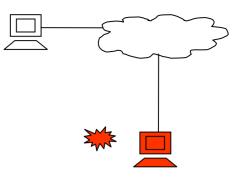
continuous latency-limited bandwidth-limited

variable fluctuating increasing



Attack Rate Dynamics

	attack rate dynamics			
	con	variable		
worm	latency- limited	bandwidth- limited	fluctuating	
Morris	V			
Sadmind	V			
Code Red v2	V		V	
Sircam			V	
Code Red II	V			
Nimda	V		V	
Slammer		V		
Code Red III	v			


Impact on Infected Host

disruptive delete/modify files subvert as DDoS zombie install backdoors

degrading (bandwidth, processing power)

Impact on Infected Host

	impact on infected host				
	dis	degrading			
worm	file modifications /deletions	DDoS zombie	back door	bandwidth/ processing power	
Morris				V	
Sadmind	V		v	V	
Code Red v2	V	V	v	v	
Sircam	V				
Code Red II	V	V	v	V	
Nimda	V		v	V	
Slammer				V	
Code Red III	V	V	v	v	

Final Remarks

Worms are currently among the biggest threats to the Internet, and therefore understanding them better is one the most important things we can do.

