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Abstract

We define three privacy-preserving solutions to the problem
of distributing secrets between manufacturers and vendors of
items labeled with Electronic Product Code (EPC) Gen2 tags.
The solutions rely on the use of an anonymous threshold secret
sharing scheme that allows the exchange of blinded informa-
tion between readers and tags. Moreover, our secret sharing
scheme allows self-renewal of shares with secret preservation
between asynchronous shareholders. The first two solutions ad-
dress the eavesdropping and rogue scanning threats. The third
solution mitigates as well tracking threats.

1 Introduction

The EPCglobal class-1 generation-2 (Gen2 for short) specifi-
cation [1], approved as ISO18000-6C in [2], has been reported
vulnerable to privacy attacks in previous studies [3, 4]. Con-
sumer privacy is indeed an important concern about Gen2 ap-
plications. For instance, the use of Gen2 tags for item-level pas-
sive tagging [5] of end-user goods, allows customers to enjoy
the benefits of RFID technology, but anyone with a compatible
Gen2 reader can access consumer’s purchase data. The read-
ability of tag identification in the Gen2 protocol clearly violates
consumer privacy. It must be properly handled before releasing
this technology for item-level tagging. A radical solution is
the use of the kill feature that disables Gen2 tags at purchase
time [1]. This solution is far from being effective because it
requires spending more time at checkout stands and voids the
benefits of the RFID technology offered to customers, such as
processing of returns and automated recycling. Our goal is to
provide lightweight alternatives that preserve consumer privacy
while avoiding killing the tags. In this paper, we survey related
works and present an original scheme for the construction of
a threshold cryptosystem lightweight enough to be deployed
on low-cost Gen2 systems. The scheme protects EPC tag data
against access by malicious readers for eavesdropping, rogue
scanning, and tracking purposes.

Tag Identification (TID) disclosure on the Gen2 Protocol

Security features on Gen2 tags are minimal [4]. They may ba-
sically protect message integrity via 16-bit Cyclic Redundancy
Codes (CRC), and generate 16-bit pseudo random strings.
Their memory, very limited, is separated into four independent
blocks: reserved memory, EPC data, Tag Identification (TID),
and User memory. Gen2 tags communicate this information
by accumulating power from reader interrogations [1]. Figure
1 shows the steps of the EPC Gen2 protocol for product in-
ventory. In Step 1, reader queries the tag and selects one of
the following options: select, inventory, or access [1]. Figure 1
represents the execution of an inventory query. It assumes that a
select operation has been previously completed in order to sin-
gulate a specific tag from the population of tags. When the tag
receives the inventory query, it returns a 16-bit random string
denoted as RN16. This random string is temporarily stored in
the tag memory. As a response to the inventory query, the tag
enters in the ready state, and backscatters in Step 2 the random
string RN16. The reader replies to the tag in Step 3 a copy
of the random string, as an acknowledgment. If the echoed
string matches the copy of the RN16 squence stored in the tag
memory, the tag enters in the acknowledged state and returns
its corresponding tag identification (TID).

Reader Tag

1. Query

2. RN16

3. ACK(RN16)

4. TID

Figure 1. EPC Gen2 Inventory Protocol.

Let us observe that any compatible Gen2 reader can access
the TID. This is due to the lack of authentication between a
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Gen2 reader and a Gen2 tag. To overcome this problem, a
whole bunch of solutions have been proposed in the literature.
Two solutions proposed in the literature rely on the use of cryp-
tographic primitives to encrypt TID and the use of pseudonyms
for the TID. Both solutions require that reader and tag share a
common secret (either a key to decrypt the protected TID or a
property to map a pseudonym to the true TID). Therefore, an
effective mechanism for the distribution of secrets among the
entities, readers and tags, of a supply chain must be introduced.

We present in this paper a threshold cryptosystem that pro-
vides both consumer privacy and distribution of secrets. Our
solution addresses the following three threats: (1) Eavesdrop-
ping: adversary listening passively through the RF (Radio Fre-
quency) communication between a tag and reader to access
the Tag Identification (TID); (2) Rogue Scanning: adversary
interacting actively with a tag to access the TID; (3) Track-
ing: adversary correlating RF communication to either pas-
sively or actively identify the same instance of a given tag.
We present three different variants of our solution for the ex-
change of secrets between manufacturers and vendors of Gen2
labeled items. The two first variants handle the eavesdropping
and rogue scanning threats. The proactiveness of the third vari-
ant addresses, in addition, the tracking threat.

The main properties of our approach are: (1) low-cost Gen2
tag renewal with secret preservation and without the need to
synchronize to a reader performing an inventory process or any
other tags holding shares for the same secret; (2) size of shares
compact enough to fit into the memory of low-cost EPC Gen2
tags (e.g., 96 bits); (3) secret sharing construction that guaran-
tees strong security; (4) reconstruction of the secret does not
require the identity of the shareholders, e.g., the Gen2 tag iden-
tifiers. The remainder of the paper is organized as follows. Sec-
tion 2 surveys privacy-preserving solutions for low-cost RFID
systems. Section 3 presents the formalization of our proposal.
Section 4 closes the paper.

2 Related Work

The design and implementation of privacy-preserving mecha-
nisms on Gen2 tags is gaining great attention in both industry
and academia. The hardware and power constraints of Gen2
tags makes challenging the use of solutions based on traditional
cryptography. The adoption of low-overhead procedures be-
comes the main approach to problems where traditional cryp-
tography cannot be accomodated. We survey solutions and
trends recently published in the literature.

2.1 Use of Traditional Cryptosystems

MAC (Message Authentication Code) based security proto-
cols are among the first solutions discussed in the literature
for securing low-cost RFID applications. In [6], for exam-
ple, Takaragi et al. present a solution based on CMOS tech-

nology that requires less than four thousand gates to generate
MACs using 128 bit identifiers stored permanently in tags at
manufacturing time. Each identifier relies on an initial authen-
tication code concatenated with manufacturing chip data. The
result of this concatenation is posteriorly hashed with a given
secret to derive a final MAC. This MAC is communicated from
manufacturers to clients and shared by readers and tags. The
main benefit of this approach is that it increases the technical
difficulties for performing eavesdropping and rogue scanning.
However, the use of static identifiers embedded in tags at man-
ufacturing time does not solve the tracking threat. Moreover,
brute force attacks can eventually reveal the secrets shared be-
tween readers and tags. The discovery of secrets could lead to
counterfeit tags.

An enhanced solution relies on the use of lock-based access
control. In [7], Weis et al. propose a mechanism to prevent
unauthorized readers from reading tag contents. A secret is
communicated by authorized readers to tags on a secure chan-
nel. Every tag, using an internal function, performs a hash of
this secret and stores the result in its internal memory. Then,
the tag enters into a locked state in which it responds any query
with the stored hash value. Weis et al. also describe a mech-
anism for unlocking tags, if such an action is needed by au-
thorized readers (i.e., to temporarily enable reading of private
data). Regarding the tracking threat, Ohkubo et al. propose in
[8] the use of hash chains to allow on-tag evolution of iden-
tifiers. Avoine and Oechslin discuss in [9] limitations of the
aforementioned approach. They propose an enhanced hash-
based RFID protocol to address eavesdropping, rogue scan-
ning, and tracking by using timestamps. Similarly, Henrici
and Müller discuss in [10] some weaknesses in the lock-based
schemes presented in [7, 8] and present an improved mecha-
nism intended to enhance them. Several other improvements
and lock-based protocols, most of them inspired on lightweight
cryptography for devices such as smart cards, can be found in
[11, 12, 13].

2.2 Hardware Limitations

Note that the approaches reviewed in Subsection 2.1 require
the implementation of efficient one-way hash primitives within
low-cost RFID tags. It is the main challenge of these propos-
als. Resource requirements of standard one-way hash func-
tions, such as MD4, MD5, and SHA-128/SHA-256, might ex-
ceed the constraints of low-cost Gen2 tags [1]. The implemen-
tation of these functions may require from seven thousand to
over ten thousand logic gates; and from six hundred to over
one thousand two hundred clock cycles [13]. The complexity
of these standard one-way hash functions is therefore an obsta-
cle for their deployment on Gen2 tags.

The use of standard encryption engines for the construction
of hash operations has also been discussed in the literature. For
example, the use of Elliptic Curve Cryptosystem (ECC) [14]
for the implementation of one-way hash primitives on RFID

Technical Report, Carleton University 2 March 2009



tags has been studied in [15]. Its use of small key sizes is seen
as very promising for providing an adequate level of compu-
tational security at a relatively low cost [16]. An ECC imple-
mentation for low-cost RFID tags can be found in [17]. In [18],
on the other hand, Feldhofer et al. present a 128-bit imple-
mentation of the Advanced Encryption Standard (AES) [19] on
an IC of about three thousand five hundred gates with a power
consumption of less than nine microampers at a frequency of
100 kHz. Although this implementation is considerably sim-
pler than any previous implementation of the AES algorithm,
its requirements are still seen as too high for low-cost RFID
tags.

2.3 Towards Secret Sharing Strategies

The use of secret sharing schemes is proposed by Langhein-
rich and Martin in [20, 21] as a key solution for addressing au-
thentication in Gen2 scenarios (e.g., supply chain applications
of the retail industry). The work presented in [20] simplifies
the lookup process performed on back-end databases for iden-
tifying tags, while guaranteeing authentication. Tag identifiers,
seen in this work as the secrets that must be shared between
readers and tags, are encoded as a set of shares, and stored in
the internal memory of tags. The authors propose the use of
a Perfect Secret Sharing (PSS) scheme, in which the size of
the shares is equivalent to the size of the secret, based on the
(t,n)-threshold secret sharing scheme introduced in [22].

The combination of shares at the reader side leads to the re-
construction of original tag identifiers. To prevent brute-force
scanning from unauthorized reader — trying to obtain the com-
plete set of shares — the authors propose a time-limited access
that controls the amount of data sent from tags to readers. At
the same time, a cache based process ensures that authorized
readers can quickly identify tags. In [20], the authors extend
the previous proposal to spread the set of shares across multi-
ple tags. Still based on Shamir’s perfect secret sharing scheme,
this new approach aims at encoding the identifier of an item
tagged with multiple RFID devices by distributing it as mul-
tiple shares stored within tags. Authentication is achieved by
requiring readers to obtain and combine the set of shares.

A different use of secret sharing schemes is presented by
Juels, Pappu, and Parno in [23]. They propose the use of a dis-
persion of secrets strategy, rather than the aggregation strategy
used by Langheinrich and Marti. In this new approach, a secret
used to encrypt Gen2 Tag Identifiers (TID) is split into multiple
shares and distributed among multiple labelled objects. Their
proposed construction and recombination of shares is based on
a Ramp Secret Sharing scheme (RSS), in which the size of each
share is considerably smaller than the size of the secret, at the
price of leaking out secret information for unqualified sets of
shares.

To identify the tags, a reader must collect a number of shares
above a threshold. Privacy is achieved though the dispersion of

secrets and encrypted identifiers. On the one hand, their disper-
sion helps to improve the authentication process between read-
ers and tags, as tags move through a supply chain. Assuming
that a given number of shares is necessary for readers to ob-
tain the EPC data assigned to a pallet, for example, a situation
where the number of shares obtained by readers is not sufficient
to reach the threshold leads to conclude that unauthorized tags
are present in the pallet. This dispersion increases the security
of tags against unauthorized readers as well as they are dis-
persed outside the supply chain. Without the space proximity
of other tags, an unauthorized reader cannot obtain the suffi-
cient number of shares to identify the original tag identifier.

The main limitation that we see on this approach is that
a critical privacy threat to consumers, such as the tracking
threat defined in Section 1, is not addressed. This is indeed
a requirement stated by most authors in the literature, such as
Juels and Weis in [24], claiming that privacy-preserving so-
lutions for RFID applications must guarantee both anonymity
and untraceability. We show in the sequel that it is possible
to improve these state-of-the-art privacy-preserving approaches
based on secret sharing strategies by providing a proof-of-
concept threshold cryptosystem that provides, in addition to
eavesdropping and rogue scanning, tracking protection.

3 On the Construction of a Proactive Threshold
Secret Sharing Scheme for Gen2

The construction of our proactive (t,n)-threshold secret shar-
ing cryptosystem relies on computation of the Moore-Penrose
pseudoinverse of a homogeneous system of n linear equations
with t unknowns (where t < n) over finite fields Zp,

a11x1 +a12x2 +a13x3 + · · · +a1txt = 0 (mod p),
a21x1 +a22x2 +a23x3 + · · · +a2txt = 0 (mod p),

...
an1x1 +an2x2 +an3x3 + · · · +antxt = 0 (mod p),

in which the vector columns of the coefficient matrix A asso-
ciated to the system of linear equations are linearly indepen-
dent, i.e., the coefficient matrix A has rank t and so the vector
columns of A span an inner-product subspace in Zn×t

p of dimen-
sion t.

The Moore-Penrose pseudoinverse (also called the general-
ized inverse) of a non-square matrix A ∈ Zn×t

p , hereinafter de-
noted as A†, is the closest representation that A can get to its
inverse (since non-square matrices, i.e., n 6= t, do not have an
inverse). Let us notice that if rank(A) = t = n, i.e., A is a full
rank square matrix, the Moore-Penrose pseudoinverse of A is
certainly equivalent to the inverse matrix A−1, i.e.,

A† = A−1 | A ∈ Zn×t
p ∧ rank(A) = t = n (1)

Otherwise, the Moore-Penrose pseudoinverse of a rectangu-
lar matrix A exists if and only if the subspaces Ker A (null space
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of matrix A) and Im A (range space of matrix A) have trivial in-
tersection with their orthogonals. In the case that A ∈ Zn×t

p has
rank(A)= t, it can be proved that A† exists and it can be com-
puted as follows:

A† = (A⊥A)−1A⊥ ∈ Zt×n
p | A ∈ Zn×t

p ∧ rank(A) = t 6= n, (2)

in which A⊥ denotes the transpose of matrix A. It can also be
proved, cf. [25], that if A∈Zn×t

p | rank(A) = t, A† is the unique
solution that satisfies all of the following four equations defined
by Penrose in [26]:

(A A†)⊥ = A A†,

A† A A† = A†,

(A† A)⊥ = A† A,

A A† A = A (3)

For our specific construction, we are interested in showing
that the resulting matrix A† keeps the orthogonal projection
property required in [26]. Indeed, we are interested in show-
ing that the resulting matrix PA computed as

PA = A A† ∈ Zn×n
p | A ∈ Zn×t

p ∧ rank(A) = t 6= n (4)

is indeed an orthogonal projector that satisfies the idempotent
property — meaning that Pk

A = PA for all k ≥ 2. Certainly, if
PA = A A†, then P2

A = (A A†) (A A†), i.e., P2
A = (A A† A) A†.

From Equation (3), we obtain that P2
A = A A†, i.e., P2

A = PA,
and so Pk

A = PA for all k ≥ 2. Therefore, if A ∈ Zn×t
p and

rank(A)= t, then A A† ∈ Zn×n
p is an orthogonal projector.

Figure 2 shows how the orthogonal projector PA can be used to
project a vector v onto the column space of matrix A.

€ 

p = PA ⋅ v

€ 

q = (I - PA) ⋅ v
€ 

v

€ 

A

€ 

A 
⊥

Figure 2. Orthogonal Projection of a Vector v
onto the Subspace Spanned by the Column Vec-
tors of Matrix A.

The Moore-Penrose pseudoinverse is a very useful tech-
nique used in many engineering fields such as error correction,
identification, control design, and structural dynamics. For an
over-determined system of linear equations without solution,

the Moore-Penrose pseudoinverse finds the least squares solu-
tion (i.e., projection of the solution onto the range space of the
coefficient matrix of the system). It is also helpful to find the in-
finite set of solutions in the range space of under-determined set
of equations (i.e., fewer constraints than unknowns). The com-
putation of the Moore-Penrose pseudoinverse of a homogenous
system of t linear equations with n unknowns (e.g., the com-
putation of the pseudoinverse of matrix A⊥ ∈ Zt×n

p ) is hence a
valid alternative for the construction of our proactive threshold
secret sharing.

3.1 Basic (t,n)-Threshold Secret Sharing
Scheme Based on the Invariance Prop-
erty of Orthogonal Projectors

Orthogonal projectors have already been used in the literature
for the construction of threshold secret sharing schemes. In
[27, 28], for example, the invariance property of orthogonal
projectors is used for the redundant storage of computer im-
ages. Indeed, an asynchronous proactive (t,n)-threshold secret
sharing scheme can be constructed based on the same observa-
tion — meaning that the invariance property of orthogonal pro-
jectors can be used to allow shareholders to renew their shares
without synchronization with other parties and without altering
the secret. The key idea of the proposed approach is that the
orthogonal projector PA computed from Equation (4) and a ran-
dom matrix A ∈ Zn×t

p with rank t is always equivalent to the
projector PB obtained from the same equation and any t inde-
pendent random range images spanned from A.

Before going any further, let us start with a simple exam-
ple that depicts the basic idea of our approach. It exempli-
fies the construction of a (2,3)-threshold, non-proactive yet,
cryptosystem; and the reconstruction process by three indepen-
dent reconstruction processes. Given two matrices A ∈ Z3×2

31 ,
X ∈ Z2×3

31 ,

A =

 7 13
6 29

13 28

 X =
[

12 9 13
26 13 7

]
such that A is a random matrix composed of two linearly in-
dependent column vectors a1,a2 ∈ Z3×1

31 , i.e., rank(A)= 2; and
X is a random matrix composed of three linearly independent
column vectors x1,x2,x3 ∈ Z2×1

31 . Note that we simplify the no-
tation, assuming A = [a1,a2, . . . ,at ], where each ai is the i-th
column vector of matrix A; and X = [x1,x2, . . . ,xn] where each
xi is the i-th column vector of matrix X . Let

A′ ∈ Z3×3
31 =

 19 15 27
20 28 2
16 16 24


be the resulting matrix obtained by multiplying matrices A and
X . We assume hereafter that the column vectors a′1, a′2, and
a′3 in matrix A′ are indeed the shares of our cryptosystem; and
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that PA ∈ Z3×3
31 is the secret of the cryptosystem, in which PA is

the orthogonal projector obtained by applying Equation (4) to
matrix A.

Let us now assume that a distribution process δ disseminates
shares a′1,a

′
2,a

′
3 ∈ A′ to three independent shareholders α , β ,

and γ . We define the following three column vectors:

Vα =

 19
20
16

 , Vβ =

 15
28
16

 , Vγ =

 27
2
24


as the corresponding shares held respectively by α , β , and γ .

Let us now assume that a reconstruction process ρ1 requests
to shareholders α and β their respective shares (notice that our
example describes a (2,3)-threshold cryptosystem and so only
two shares suffice to reconstruct the secret). A second recon-
struction process ρ2 requests to shareholders α and γ their re-
spective shares. Finally, a third reconstruction process ρ3 re-
quests to shareholders γ and β their shares. Processes ρ1, ρ2,
and ρ3 build independently three reconstruction matrices B1,
B2, and B3:

B1 =

 22 25
13 4
20 1

 , B2 =

 15 29
28 26
16 5

 , B3 =

 8 15
4 25

13 28


We can finally observe that the orthogonal projector ob-

tained by applying Equation (4) to either B1, B2, or B3 is equiv-
alent to the orthogonal projector obtained by applying Equation
(4) to matrix A:

PA =

 27 13 11
13 23 21
11 21 14

 , PB1 = PB2 = PB3 =

 27 13 11
13 23 21
11 21 14


Therefore, the three processes ρ1, ρ2, ρ3 may successfully

reconstruct the secret (i.e., PA) by performing the same opera-
tion described by Equation (4). The following theorem estab-
lishes the corretness of the approach for the general case.

Theorem 1 Let A ∈ Zn×t
p be a random matrix of rank t. Let

A′ ∈ Zn×n
p be the result of multiplying matrix A with a set of n

linearly independent column vectors x1,x2, . . . ,xn ∈ Zt×1
p , i.e.,

A′ = Axi (mod p) ∀xi ∈ [x1,x2, . . . ,xn]. Let B be any submatrix
from A′ with exactly t column vectors. Then, the orthogonal
projectors PA and PB derived from Equation (4) are equivalent.

Proof Note that PA = A A† and PB = B B† are the orthogonal
projectors obtained by applying Equation (4) to both A and B.
Since B is any submatrix derived from A′ with exactly t column
vectors, we can also denote B as the resulting matrix obtained
by multiplying A ∈ Zn×t

p times a given matrix X ∈ Zt×t
p . There-

fore, PB = B B† is equivalent to PB = (A X)(A X)† and so to

PB = A X X† A†. We know from Equation (1) that X† = X−1

when X is a square matrix. Therefore, PB = A X X−1 A†. Since
matrix X gets cancelled, we obtain that PB = A A† and so equiv-
alent to PA. �

3.2 Efficiency

The efficiency of a secret sharing scheme can be evaluated in
terms of the information entropy of its shares and the secret
of the cryptosystem [29]. A secret sharing scheme is said to
be perfect if it holds that the entropy of the shares is greater
or equal than the entropy of the secret. As a consequence, the
size of each share on a perfect secret sharing scheme must be
equal or greater than the size of the secret. This is an inconve-
nient to the hardware limitations of the RFID model discussed
in Section 2.2. Ramp secret sharing schemes may considerably
improve this efficiency, by allowing a trade-off between secu-
rity and size of the shares. This is the case of the approach
presented in the previous section (cf. Section 3.1). Notice that
the size of each share a′i ∈ A′ of our construction is consid-
erably smaller than the size of the secret PA. More precisely,
every share a′i is a column vector in Zn×1

p , while the size of the
secret is a matrix in Zn×n

p , i.e., the size of every share is n times
smaller than the secret.

To analyze the robustness of a ramp secret sharing scheme,
in terms of its security, it is necessary to quantify the amount of
information about the secret that an intermediate set of shares,
smaller than the threshold t, may leak out. This leakage of
secret information represents the size of the ramp, in which
a small ramp provides stronger security to the scheme than a
larger ramp. Yakamoto proposed in [30] to quantify the expo-
sure of secret information from each share by defining a sec-
ond threshold t ′, where 0 < t ′ ≤ t. By definition, a qualified
coalition of t shares may reconstruct the secret. An unqualified
coalition of t− t ′ shares cannot reconstruct the secret, but leaks
out information about it. Less than t ′ shares may not recon-
struct the secret and does not reveal any information about the
secret. The amount of information leaked out from the secret
by an unqualified coalition of t − t ′ shares can be quantified in
terms of information entropy. Yakamoto proved in [30] that the
security of a ramp secret sharing scheme is strong enough when
the following equivalence applies:

H(S|C) =
t− t ′

t
H(S), (5)

in which H(S) is the information entropy of the secret, and
C is an unqualified coaliation of t − t ′ shares. We prove in the
sequel that the security of the threshold cryptosystem presented
in Section 3.1 is, according to [30], strong enough.

Theorem 2 Let A ∈ Zn×t
p be a random matrix of rank

t. Let PA ∈ Zn×t
p be the orthogonal projector obtained by

applying Equation (4) to matrix A. Let A′ ∈ Zn×n
p be the
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result of multiplying matrix A with a set of n linearly inde-
pendent column vectors x1,x2, . . . ,xn ∈ Zt×1

p . Then, the basic
(t, t ′,n)-threshold secret sharing scheme constructed from the
invariance property of the orthogonal projector PA, in which
matrix PA is the secret of the cryptosystem, and the column
vectors a′1,a

′
2, . . . ,a

′
n ∈ A′ are the shares of the cryptosystem, is

equivalent to Equation (5).

Proof Given that the information provided by matrix A
derives PA by simply applying Equation (4), we know that
H(PA|A) = 0. Using some information entropy algebra manip-
ulation, we can use this result to decompose H(PA) as

H(PA) = H(PA|A)+H(A)−H(A|PA)
= H(A)−H(A|PA) (6)

Notice that matrix A is any full rank matrix chosen uni-
formly at random from the sample space in Zn×t

p . It is proved
in [33] that there are exactly ∏

t−1
i=0 (pn− pi) random matrices of

rank t in Zn×t
p . Therefore, we can compute H(A) as follows:

H(A) = log2

(
t−1

∏
i=0

(pn− pi)

)
(7)

Knowing A and PA easily leads to H(A|PA). From Equations
(3) and (4), we have that PA times A is equivalent to A, meaning
that A is an eigenvector matrix of PA. Hence, the decomposition
of PA into t eigenvectors [v1,v2, . . . ,vt ] = V ∈ Zn×t

p provides
information about A. More precisely, matrix A can be obtained
from V by using a transformation matrix W ∈ Zt×t

p . Since the
sample space from which matrix W can be uniformly chosen
is exactly of size ∏

t−1
i=0 (pt − pi), we have that H(A|PA) can be

obtained as follows:

H(A|PA) = log2

(
t−1

∏
i=0

(pt − pi)

)
(8)

Using Equations (7) and (8) we can now compute H(PA) =
H(A)−H(A|PA):

H(PA) = log2

(
t−1

∏
i=0

(pn− pi)

)
− log2

(
t−1

∏
i=0

(pt − pi)

)
(9)

Let us now quantify, in terms of entropy, the information
about PA provided by an unqualified coalition A′ of t ′ shares,
s.t., A′ = [a′1,a

′
2, . . . ,a

′
t ′ ], and where 0 < t ′ < t. Since matrix

A′ can be seen as a random matrix of rank t ′ chosen uniformly

from the sample space ∏
t ′−1
i=0 (pn− pi), we have that H(A′) can

be denoted as follows:

H(A′) = log2

(
t ′−1

∏
i=0

(pn− pi)

)
(10)

Matrix A′ is also an eigenvector matrix of PA. The decompo-
sition of PA into t eigenvectors [v1,v2, . . . ,vt ] = V ∈ Zn×t

p pro-
vides information about A′. Indeed, matrix A′ can be obtained
from V by using a transformation matrix W ′ ∈ Zt×t ′

p . Since the
sample space from which matrix W ′ can be uniformly chosen
is exactly of size ∏

t ′−1
i=0 (pt − pi), we have that H(A′|PA) can be

obtained as follows:

H(A′|PA) = log2

(
t ′−1

∏
i=0

(pt − pi)

)
(11)

We can quantify the amount of information about PA pro-
vided by A′, i.e., H(PA|A′), using the results from Equations
(9), (10), and (11):

H(PA|A′) = H(PA)−H(A′)+H(A′|PA)

= log2

(
t−1

∏
i=0

(pn− pi)

)
− log2

(
t−1

∏
i=0

(pt − pi)

)
−

log2

(
t ′−1

∏
i=0

(pn− pi)

)
+ log2

(
t ′−1

∏
i=0

(pt − pi)

)
(12)

When p is a large number, we can simplify the logarith-
mic expressions in Equations (9) and (12) to derive H(PA) and
H(PA|A′) as the following approximations:

H(PA) ≈ t(n− t) log2 p

H(PA|A′) ≈ (t− t ′)(n− t) log2 p

We observe that the information entropy of PA, knowing A′,
is approximatively t−t ′

t times the information entropy of PA:

H(PA|A′) ≈ t− t ′

t
H(PA), (13)

which, according to Equation (5) provided by Yakamoto in
[30], guarantees that the security of the ramp threshold secret
sharing scheme is strong enough. �

Let us conclude this section by determining a value of t, in
terms of n, that guarantees that t −1 shares cannot reconstruct
the secret. Given that the secret is the orthogonal projection
PA derived from the computation of Equation (4) and matrix
A, and observing again that the projection of A onto the sub-
space spanned by its range space remains in the same place, i.e.,
PA ·A = A, it is therefore trivial to observe that the projection of
any share onto the same subspace does not change either. This
effect can be used by a malicious adversary in order to discover
PA by solving n consecutive equations of (t−1) shares. Since,
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by definition, a (t,n)-threshold secret sharing scheme must pre-
vent any coalition of less than t shares from reconstructing the
secret, the parameter t of our construction shall be bounded in
terms of n as follows:

(t−1)n <
n(n+1)

2
−1,

t <
3+n

2
(14)

Hence, from Theorems 1 and 2, we conclude that if
t < 3+n

2 , the scheme presented in Section 3.1 is a strong ramp
threshold secret sharing scheme in which exactly t shares may
reconstruct the secret, but t−1 or fewer shares cannot.

3.3 Pseudo-Proactive Threshold Secret
Sharing Scheme Based on the Invariance
Property of Orthogonal Projectors and
Multiplicative Noise for the Renewal of
Shares

We significantly improve in this section the results presented in
Section 3.1 by showing that the introduction of multiplicative
noise in the coefficients of matrix A′ does not affect the
reconstruction phase. By multiplicative noise we assume
independent scalar multiplication of column vector shares
a′i ∈ A′ and scalar random numbers r1, . . . ,rk for stretching
or elongating these vectors. Indeed, we show that the intro-
duction of multiplicative noise into the column vectors of any
reconstruction matrix Bi obtained from t column vectors in A′

does not affect the results.

The following example shows the key idea of this new ver-
sion. Assuming again a (2,3)-threshold secret sharing scheme
based on the orthogonal projectors of matrices A ∈ Z3×2

31 , X ∈
Z2×3

31 , and A′ = AX ∈ Z3×3
31 :

A =

 7 13
6 29
13 28

 , X =
[

12 9 13
26 13 7

]
, A′ =

 19 15 27
20 28 2
16 16 24



If we now generate three matrices B1, B2, and B3 as com-
binations of vector columns from A′ = [a′1,a

′
2,a

′
3] and multi-

plicative noise, such as B1 ∈ Z3×2
31 = [5 · a′1,17 · a′2] (mod 31),

B2 ∈ Z3×2
31 = [7 · a′1,13 · a′3] (mod 31), and B3 ∈ Z3×2

31 = [9 ·
a′3,22 ·a′2] (mod 31):

B1 =

 2 7
7 11
18 24

 , B2 =

 9 10
16 26
19 2

 , B3 =

 26 20
18 27
30 11


we can still observe that the orthogonal projectors obtained
by applying Equation (4) to either B1, B2, or B3 are certainly

equivalent to the orthogonal projector obtained by applying
Equation (4) to matrix A:

PA =

 27 13 11
13 23 21
11 21 14

 , PB1 = PB2 = PB3 =

 27 13 11
13 23 21
11 21 14


Theorem 1 also applies in the general case of this new ap-
proach. Notice that if A ∈ Zn×t

p is a random matrix of rank
t, and A′ ∈ Zn×n

p is the result of multiplying matrix A with n
linearly independent column vectors x1,x2, . . . ,xn ∈ Zt×1

p , i.e.,
A′ = Axi (mod p) ∀xi ∈ [x1,x2, . . . ,xn]; then, any submatrix
B derived from exactly t column vectors in A′, but streched
or elongated by multiplicative noise, can still be factorized as
B = A X ′, where X ′ ∈ Zt×t

p is a square random matrix result-
ing from the set of t linearly independent column vectors in X ,
but stretched or elongated by a specific scaling random number
r modulo p. We know from Equation (1) that (X ′)† = (X ′)−1

when X ′ is square. Therefore, X ′ gets cancelled during the re-
construction phase, i.e., PB = A X ′ (X ′)−1 A†, and we obtain
that PB = PA = A A†.

3.4 Proactive Threshold Secret Sharing
Scheme Based on the Invariance Prop-
erty of Orthogonal Projectors and Both
Multiplicative and Additive Noise for
the Renewal of Shares

We have seen in the previous section that every share in the set
of shares derived from matrix A′ can be independently trans-
formed by adding multiplicative noise, and so generating nu-
merically different shares, but still guaranteeing the invariance
property of orthogonal projectors to always reconstruct the ini-
tial secret (i.e., the orthogonal projector PA derived from matrix
A). However, even if the new shares are numerically differ-
ent, any malicious adversary can successfully observe that the
shares are always linearly dependent, since the transformation
process is simply stretching or elongating the initial share by
some scaling random factor r.

We solve this problem by combining both multiplicative and
additive noise in the transformation process. The only require-
ment is to provide to the process in charge of reconstructing
the secret a reference used in the transformation process. We
assume that this reference is the last column vector in matrix
A′. We also assume that the generation procees in charge of
the construction of A′ guarantees that the last column vector is
an un-ordered collection of distinct elements. Then, sharehold-
ers are given access to this reference to renew their shares with
a linear combination of this reference column. Note that this
reference column must be also known a priori by the recon-
struction process, but not by any malicious adversary that has
access to the renewed shares. Let us illustrate with an example
the key idea of this new version. Assuming a (2,3)-threshold
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secret sharing scheme based on matrices A ∈ Z3×2
31 , X ∈ Z2×3

31 ,
and A′ ∈ Z3×3

31 = Axi (mod p) ∀xi ∈ X :

A =

 7 13
6 29
13 28

 , X =
[

12 9 13
26 13 7

]
, A′ =

 19 15 27
20 28 2
16 16 24


Every shareholder is given column a′3 and either column a′1

or column a′2. Let us assume two shareholders α and β in the
system, each holding one of the following two share pairs Vα

and Vβ :

Vα =

 19 27
20 2
16 24

 , Vβ =

 15 27
28 2
16 24


Let us assume that a reconstruction process ρ1 requests to

each shareholder their share combination. Both α and β re-
turn to ρ1 a linear transformation from the column vectors in
their share pairs. Shareholder α generates a random value
rα = 15, transforms vα1 into vα1 · 15 (mod31), and returns
bα ∈ Z3×1

31 = vα1 + vα2. Similarly, β generates a random value
rβ = 14, transforms vβ1 into vβ1 · 14 (mod31) and returns
bβ ∈ Z3×1

31 = vβ1 + vβ2. Two other reconstruction processes
ρ2 and ρ3 request to each share holder their shares. Sharehold-
ers α and β return to ρ2 and ρ3 two different linear combi-
nations from the column vectors in their share pairs. Share-
holder α returns b′α ∈ Z3×1

31 = 28 · vα1 + vα2 to process ρ2, and
b′′α ∈ Z3×1

31 = 5 ·vα1 +vα2 to process ρ3. Shareholder β returns
b′

β
∈ Z3×1

31 = 19 · vβ1 + vβ2 to process ρ2, and b′′
β
∈ Z3×1

31 =
21 ·Vβ1 +Vβ2 to process ρ3. Finally, the process ρ1 assembles
with bα ,bβ the reconstruction matrix B1 ∈ Z3×2

31 ; the process
ρ2 builds with b′α ,b′

β
the reconstruction matrix B2 ∈ Z3×2

31 ; and
the process ρ3 produces with b′′α ,b′′

β
the reconstruction matrix

B3 ∈ Z3×2
31 :

B1 =

 2 20
23 22
20 0

 , B2 =

 9 18
1 10
17 2

 , B3 =

 30 24
28 15
20 27


We observe that the orthogonal projectors obtained by ap-

plying Equation (4) to matrices B1, B2, and B3 are equivalent
to the orthogonal projector obtained by applying Equation (4)
to matrix A:

PA =

 27 13 11
13 23 21
11 21 14

 , PB1 = PB2 = PB3 =

 27 13 11
13 23 21
11 21 14


Notice that each matrix Bi = [bi1,bi2], s.t. i ∈ {1 . . .3}, can

be decomposed as follows:

Bi =
[
rα ·a′1 +a′3 , rβ ·a′2 +a′3

]

=
[
rα ·Ax1 +Ax3 , rβ ·Ax2 +Ax3

]
=

[
A (rα · x1 + x3) , A (rβ · x2 + x3)

]
=

[
A x′1 , A x′2)

]
= A X ′

i (15)

in which rα and rβ are the random factors introduced by
each shareholder on every interrogation as multiplicative noise;
and X ′

i ∈Z2×2
31 is a random full rank square matrix derived from

A′, and so from A X , plus the multiplicative and additive noise
introduced by the shareholders on every interrogation. Since
matrix X ′

i is a square matrix, the equivalence defined in Equa-
tion (1) applies, i.e., X†

i = X−1
i . Therefore, the computation

of any orthogonal projector PBi based on Equation (4) cancels
matrix X ′

i and so PBi is always equivalent to matrix PA. This
establishes the general case of the new approach based on the
proof of Theorem 1.

Let us also observe that if processes ρ1, ρ2, and ρ3 are exe-
cuted by a qualified entity Ψ1 with knowledge of reference a′3,
the returned set of column vectors bα , b′α , b′′α , and so forth, are
clearly linked:

bα =

 2
23
20

 ,b′α =

 9
1

17

= r1bα +

 27
2

24

 , . . .

Conversely, if we assume that processes ρ1, ρ2, and ρ3 were
executed by a malicious adversary Ψ2 who is trying to link
the shares returned by either α or β , for tracking purposes,
but not having access to the column vector reference a′3, the
returned set of column vectors bα , b′α , and b′′α , as well as
column vectors bβ , b′

β
, and b′′

β
, are viewed as unlinked.

4 Conclusions

We presented a proactive secret sharing procedure to provide
consumer privacy and distribution of secrets. Our solution
addresses the eavesdropping, rogue scanning, and tracking
threats. The main properties of our approach are: (1) low-cost
share renewal with secret preservation and without need of
synchronization; (2) compact size of shares; (3) secret sharing
construction that guarantees strong security; (4) reconstruction
of the secret does not require the identity of the shareholders.
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