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Abstract

We introduce a general non-Gaussian, self-similar, stochastic process called the fractional L´evy motion (fLm).

We formally expand the family of traditional fractal network traffic models, by including the fLm process. The

main findings are the probability density function of the fLm process, several scaling results related to a single-

server infinite buffer queue fed by fLm traffic, e.g., scaling of the queue length, and its distribution, scaling of the

queuing delay when independent fLm streams are multiplexed, and an asymptotic lower bound for the probability

of overflow (decreases hyperbolically as function of the buffer size).

Keywords
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I. I NTRODUCTION

It has been suggested that Internet traffic is far too complicated to be modeled using the

techniques developed for the telephone network or computer systems [26]. We argue that al-

though traffic theory currently plays a very minor role in the design of the Internet, it should

be increasingly used in the development, design and dimensioning of the future multiservice

Internet. Extensive traffic measurement studies from a wide range of data networks and ser-

vices/applications, have convincingly demonstrated the self-similarity or fractal nature of data

traffic [4], [12], [20]. As a consequence, a large number of traffic models have been proposed

in order to successfully characterize the real statistical behaviour of the traffic met in networks

today. The reason for that is that self-similarity has serious implications for the analysis, design,

and control of broadband networks. In contrast, traditional schemes, typically Markovian in

nature, which have been (and currently are) extensively used may lead to substantial unteresti-

mation of QoS metrics such as delay and blocking (see [19] for a comprehensive treatment of

the problem).

More specifically, measurements and statistical analysis of real traces reveal that traffic ex-

hibits irregularities (burstiness) both in terms of extreme variability of traffic intensities as well

as persistent autocorrelation. Such traffic looks extremely irregular (under appropriate aggrega-

tion) at different time scales [12] and such extreme behavior is not exhibited by the traditional

Poisson traffic which smoothes out when aggregated at coarser time scales. It is said that Inter-

net traffic demonstrates the property ofself-similarity. According to Mandelbrot, an irregular,
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self-similar object is called asfractal [14]. Fractal modeling has been used in a number of re-

search areas such as financial mathematics, telecommunications, and chaotic dynamics [1], [17].

Internet traffic and more generally broadband network traffic, is an area where fractal modeling

has become popular recently [26].

The first attempt to apply the fractal concept to traffic modeling was to use the of so-called

“fractional Gaussian noise” (fGn) instead of traditional Poisson-based models. Compared to

standard Gaussian noise, the fractional Gaussian noise model has one extra parameter, the Hurst

parameterH, which quantifies the strength of the fractal scaling. It is said usually, that the fGn

is self-similar, or fractal, with Hurst parameterH.

In this paper we formally introduce, develop and elaborate a teletraffic model which takes into

account, in addition to the Hurst parameterH 2 [1=2; 1), the Lévy parameter� 2 (1; 2]. It is

so-calledfractional Lévy motion(fLm), mentioned by Mandelbrot in [15].

Two important subclasses of L´evy motion exist: (i) the well-known ordinary L´evy motion

(oLm), an�-stable process (distributed in the sense of P. L´evy [13]) with independent incre-

ments, which is a generalization of the ordinary Brownian motion (the Wiener process), and (ii)

elaborated in this paper, the fractional L´evy motion, a self-similar and stable distributed pro-

cess, which generalizes the fractional Brownian motion (fBm), has stationary increments and an

infinite “span of interdependence”.

The (fractional) Lévy random process plays an important role in traffic modeling and more

generally in the study of applied stochastic processes, for at least two reasons. The first is that

the (fractional) Lévy motion can be considered as a generalization of the (fractional) Brownian

motion. The mathematical foundation of the generalization, is obtained using basic properties

of stable probability laws. From the limit theorem point of view, stable distributions are gen-

eralizations of the widely used Gaussian distributions: Stable distributions are obtained at the

limit of (properly normalized) sums of independent identically distributed random variables. An

important distinction for the�-stable probability distribution is that the power-law (of the com-

plementary cumulative distribution function) decreases asjxj�1��, where� is the Lévy index

with 0 < � � 2. Hence, the moments of order� � � diverge. In queuing analysis of telecom-

munication switches and routers, infinite moments in the input process can engender infinite

moments in the queuing process, corresponding to rather long waiting times.
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The second reason for the important role of the fractional L´evy motion is its property of scale

invariance or self-similarity. Furthermore, theincrementsof the process are not only self-similar

but alsodependenton each other, having at the same time distributions withheavy tails. The

fractional Brownian motion is mathematically tractable, and easily applied to modeling of fractal

traffic. It is however, a Gaussian process and it has finite variance. The fLm is more general

and it may be well suited for modeling of traffic intensities or rates that have large spreadings

(in theory infinite variance). Moreover, synthetically generated traces of traffic profiles may be

important for stressing/testing actual computer systems/networks. Therefore, we believe that it

is important to understand and analyze the behavior of queues fed by fLm traffic streams.

So far, several self-similar stable motions have been proposed for traffic modeling. These

processes combine, in a natural way, both scaling behavior and extreme local irregularity. In [9]

the authors use the stationary sequence induced by the linear fractional stable motion (LFSM)

for heavy-traffic modeling of real Ethernet, VBR video, and WWW traffic. In [6], a compar-

ison study of the queuing performance of the fGn and the noise induced by the LFSM is pre-

sented, and in [7] admission control issues are addressed. Consequently, similar models based

on other self-similar�-stable processes with stationary increments, e.g.,�-stable Le´vy motion,

log-fractional stable motion, have tried to address the problem of self-similarity and heavy-tails

at the same time [2], [5], [11]. For more information about these non-Gaussian processes see

[23].

The objective of our research in this paper is twofold: a) We provide a formal definition of the

fractional Lévy process, show some of its properties, and derive its probability density function

following a novel approach, and b) we provide queuing results related to the asymptotic behavior

of the tail of the queue-length distribution, the overflow probability, and the queuing delay.

The paper is organized as follows. In Section 2 we present the definition and properties of

the fractional Lévy motion (fLm). We start by introducing basic properties of the ordinary L´evy

process. Then we define the fLm in terms of a Riemann-Liouville fractional integral and we

show the self-similarity of the process and its increments. Further properties of fLm are derived

and we conclude with the computation of its probability distribution function and the fractional

moments of its increment.

In Section 3 we present a new traffic model based on fLm. Input traffic modeled as fLm, is
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fed to a single server queue with infinite buffer size. Scaling results for the queue size as well

as its distribution are then presented. In Section 4, we study the tail distribution of the overflow

probability and we calculate an approximate lower bound for it.

In Section 5, we study the scaling dependences of the queuing delay, as the number of multi-

plexed streams grow in proportion with the service rate of the queue.

Finally in Section 6 we present our conclusions and suggestions for further research.

II. FRACTIONAL LÉVY MOTION AND ITS PROPERTIES

A. Self-Similarity

There are a number of different definitions of self-similarity. The standard one states that

a continuous-time processY = fY (t); t � 0g is self-similar, with self-similarity parameter

H � 0 (H-ss), if it satisfies the condition:

Y (t)
d
= c�HY (ct); 8t � 0; 8c > 0; (1)

where the equality is in the sense of finite-dimensional distributions. This means that, for any

d � 1 sequence of time pointst1; : : : ; td, and any positive constantc, c�H(Yct1; Yct2 ; : : : ; Yctd)

has the same distribution as(Yt1; Yt2 ; : : : ; Ytd). TheHurst parameterH is the scaling parameter

of self-similarity.

The are many different self-similar processes in the literature. We typically consider self-

similar processes with stationary increments, and call themH-sssiprocesses, since they are of

great interest in applications. For details on self-similar processes see [4] and [23]

For example, from the above definition, it is not difficult to check that the Wiener process or

(ordinary)Brownian motion(oBm) [4], is a self-similar process withH = 1=2 and since it has

stationary increments, it is a1=2-sssi process.

B. Definition of the fractional L´evy motion

The counterpart of the Brownian motion for0 < � � 2 is the symmetric�-stable Lévy

motion((ordinary) Lévy Motion (oLm))L� = fL�(t); t � 0g. oLm is a Markov stochastic

process that starts at0, has stationary independent increments, and isH-sssi withH = 1=�, i.e.,

L�(ct)
d
= c1=�L�(t); t � 0. The probability density function of oLm is
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p�(x; t) =
1

2�

1Z
�1

dkeikx expf��jkj�tg; (2)

where� > 0 is a scale parameter.

It is known for oLm, that an “1=� law” can be stated for thefractional structure function

S�(�; �) = E[L�(t+ � )� L�(t)]
� as follows:

For0 < � < 2

S�(�; �) =

8><
>:

� �=�V (�;�); � < � � 2

1 � � �
(3)

whereV (�;�) is defined as

1

V (�;�) =
��=�

2�

1Z
�1

d�j�j�
1Z

�1

d& exp (i�& � j&j�) : (4)

Following Mandelbrot’s generalization of the ordinary Brownian motion to the fractional

Brownian motion (fBm) in [15], we define thefractional Lévy motion(fLm) process as the

following Riemann-Liouville fractional integral

2

L�;H(t) =
1

�(H + 1
2
)

tZ
0

dL�(� )(t� � )H�1=2; (5)

whereL�(t) is the ordinary symmetric�-stable Lévy Motion (oLm), and�(�) denotes the

gamma function.

Note, that fLm is the generalization of the well known fractional Brownian motion, which can

obtained from (5) for� = 2. So, the role that fLm plays among stable processes is similar to the

role that fBm plays among Gaussian processes.

We also define theincrements of the fLm process, as�L�;H(� ) = fL�;H(t+� )�L�;H(t); � �

0g, which is a continuous-time stationary process.
1Note, that theV (�;�) can be easily evaluated and as a result we have

V (�;�) =
2��=�

��
sin
�
��

2

�
�(1 + �)�(1�

�

�
); � < � � 2:

where gamma function�(z) has a familiar integral representation,�(z) =
1R
0

dttz�1e�t; Rez > 0: The expression for

V (�;�) was obtained at first by West and Seshadri (see Eq.(3.6) in Ref. [25]).
2For the definition of the fractional integral see, for example, [?], [22].
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Let us discuss some important properties of the fLm process and its increments.

Theorem 1: The fLm is aH-sssi process with Hurst parameterH �
1
2
+ 1

�
.

Proof: The proof is based on the self-similarity property of oLm.

For t � 0 andc > 0,

L�;H(ct) =
1

�(H + 1

2
)

ctZ
0

dL�(� )(ct� � )H�1=2

Let � = cs and use the fact thatdL�(cs)
d
= c1=�dL�(s). Then,

L�;H (ct)
d
=

1

�(H + 1

2
)

ctZ
0

c1=�dL�(s)(ct � cs)H�1=2

=
cH�

1
2+

1
�

�(H + 1

2
)

tZ
0

dL�(s)(t � s)H�1=2 = cH�
1
2+

1
�L�;H(t):

So, according to definition (1), fLm is a(H �
1

2
+ 1

�
)-sssi process.

Corollary 1: ThefL�;H(t2)� L�;H(t1)g increment process is self-similar with Hurst param-

eterH �
1
2
+ 1

�
.

Proof: The proof is based on the self-similarity property of the fLm and the stationarity of its increments. It

is easy to show that fort2 � t1 andc > 0

L�;H(ct2)� L�;H(ct1)
d
= cH�

1
2+

1
� (L�;H(t2)� L�;H(t1));

i.e., the increment process is self-similar with the same Hurst parameterH �
1

2
+ 1

�
.

C. The probability distribution function of the fLm

In this we derive the probability distribution function (pdf)p�;H(x; t) of the fLm using the

pdf of oLm and some results from functional calculus (theory of generalized functions and

functionals).

Let us first define the characteristic function�L�;H (k; t) of the fLm as

�L�;H (k; t) = E[e�ijkjL�;H(t)] = E[e
�ijkj 1

�(H+1
2
)

tR
0

dL�(�)(t��)
H�1=2

] (6)

By taking the inverse Fourier transform of the characteristic function, we can find thep�;H(x; t).
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We now turn our attention to the following lemma, referring to the oLm process.

Lemma 1:For a well behaved functionf(t) the following holds

E[e
�ik

tR
0

dL�(�)f(�)

] = e
��jkj�

tR
0

(f(�))�d�

Proof: The proof can be obtained from results from functional calculus and by using the characteristic

function of the oLm process, i.e.,E[e�ikL�(t)] = e��jkj
�
t.

We now derivep�;H(x; t) in the following theorem:

Theorem 2: The probability distribution function (pdf)p�;H(x; t) of the fLm process is given

by

p�;H(x; t) =
1

2�

1Z
�1

dkeikx expf��jkj�t�(H�
1
2
)+1
g: (7)

Proof: Following the above lemma forf(� ) = (t��)
H� 1

2

�(H+
1
2 )

we get

�L�;H (k; t) = e

��
jkj�

��(H+1
2
)

tR
0

(t��)
�(H� 1

2
)
d�

;

or

�L�;H (k; t) = e��jkj
�
t
�(H� 1

2
)+1

;

where

� =
�

��(H + 1

2
)
�
�(H �

1

2
) + 1

� : (8)

Hence, thep�;H(x; t) is given by equation (7).

By using the Taylor series expansion of the second exponential in (7), we can get

p�;H(x; t) = �(x) +
1

2�

1Z
�1

dkeikx
1X
n=1

(��)n

n!
jkj�nt�n(H�

1
2
)+n; � < 2: (9)

The integral overk can be evaluated as follows

1

2�

1Z
�1

dkeikxjkj�n =

1

�jxj�n+1
�(�n + 1) � <e exp(i

�(�n+ 1)

2
) = �

1

�jxj�n+1
sin(

��n

2
)�(�n + 1):

So, the probability density function is equivalent to
February 11, 2001 DRAFT
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p�;H(x; t) = �(x)�
1

�

1X
n=1

(��)n

n!

t�n(H�
1
2
)+n

jxj�n+1
sin(

��n

2
)�(�n + 1): (10)

The above series (10) is convenient for the study of the asymptotic behavior ofp�;H(x; t), as

jxj ! 1.

The pdf of the fBm is obtained from (7), as a special case for� = 2:

p2;H(x; t) =
1

2�

1Z
�1

dkeikx expf��k2Bt
2H
g =

s
1

4��Bt2H
expf�

x2

4�Bt2H
g;

where�B is given by (8) for� = 2, i.e,�B = �=2H�2(H + 1=2).

Corollary 2: A “ �H�
1
2
+ 1

� law” for the fractional structure function of the fLm can be stated

as follows:

S�;H(�; �) = E[L�;H(t+ � )� L�;H(t)]
� =

8><
>:

� �(H�
1
2
+ 1

�
)VH(�;�); � < � � 2

1 � � �
(11)

where

VH(�;�) =
��=�

2�

1Z
�1

d�j�j�
1Z

�1

d& exp (i�& � j&j�) : (12)

Proof: The proof is be obtained using the pdf of the fLm process.

Proposition 1: If L�;H(t) isH-sssi with a continuous fractional structure function of order�,

1 < � < �, then

1

2
�

1

�
� H �

3

2
�

1

�
: (13)

Proof: The left part of the inequality can be proved, requiring�-order moment continuity ofL�;H(t) [24].

The right part follows using the “�H�
1
2+

1
� law” and the Minkovski inequality applied toVH (�;�) .

III. QUEUING ANALYSIS WITH FLM INPUT

In this Section we use the apply the fLm process to define a 4-parameter “fractional L´evy

traffic” model, and study the queuing process arising when this traffic is fed to FCFS queue with

unlimited buffer space and constant service (leak) rater > 0.
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A. The fractional L´evy traffic model

The “Fractional Lévy traffic” model we consider, is a generalization of the “Fractional Brow-

nian traffic” model that was first introduced by Norros [18]. So, in continuous time, the cumu-

lative traffic (or arrival) processA(t), that is the amount of total load (in bits, say) produced by

a source in the time interval[0; t]; t > 0, can be modeled by

A(t) = mt+ (�m)1=�L�;H(t); (14)

wherem > 0 is the mean input rate,� is the scale factor, andL�;H(t) is the fLm process

defined by (5).

The model has four parametersm;a; � andH with the following interpretations:

� m > 0 is the mean constant input rate

� � 2 (1; 2] measures the “thickness” of the tails of the stable distribution

� � > 0 is the scaling parameter that can be seen as the dispersion around the mean of the traffic

� H 2 [1
2
�

1
�
; 3
2
�

1
�
] is the Hurst parameter (index of self-similarity)

B. Scaling of the queue length and its distribution

An important issue is the impact of fractality on queuing. Several network engineering prob-

lems, such as buffer dimensioning and traffic control, are related to this question which makes it

extremely important.

The first result on queuing analysis of self-similar traffic seems to appear in Norros [18] in

which the popular Weibull (lower) bound of theoverflow probabilityhas been established using

the fBm input process. In this paper, we elaborate this analysis for the more general case, where

the workload is self-similar and stable instead of Gaussian.

Consider a single server queue with constant service rater > 0 and infinite buffer space,

where the input is a stable self-similar process following (14) (� = m=r is the queue utilization,

andr > m for stability). The buffer occupancyQ(t; r) at timet (queue size or queue length),

can be written as

Q(t; r) = sup
0�s�t

(A(t)�A(s)� r(t� s)); (15)

similarly to the well-known Reich’s formula for the virtual waiting time in a queuing system

[21], (see also, [3]).
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Hence,(A(t)� A(s)) is the amount of work arrived to be processed during the time interval

[s; t] andr(t� s) is the amount of work that has been processed in the same time interval.

It is immediately seen thatQ(t; r) is indeed a stationary, fractional stable process. This fol-

lows as a consequence of the stationarity, self-similarity and stability of the increments of the

fLm process. Scaling dependences ofQ(t; r) can be deduced directly from the properties of

fLm. Let us first study the behavior ofQ(t; r) at different time scales.

Theorem 3: The stochastic processQ(t; r) has the following scaling

Q(ct; r)
d
= cH�

1
2
+ 1
�Q(t; c�H+ 3

2
� 1

� r + (1� c�H+ 3
2
� 1
� )m) (16)

for anyc > 0.

Proof: Let

Q(ct; r) = sup
0�s�t

(A(ct) �A(cs) � r(ct� cs)):

Using the fact that the increments of the fLm are self-similar with Hurst parameterH �
1

2
+ 1

�
, we obtain

Q(ct; r)
d
= cH�

1
2+

1
� sup
0�s�t

�
(�m)1=�(L�;H(t)� L�;H(s)) + c�H+

3
2�

1
� (m� r)(t� s)

�
=

cH�
1
2+

1
�Q(t; c�H+

3
2�

1
� r + (1� c�H+

3
2�

1
� )m):

In other words, the processQ(ct; r) is equal in distribution with thecH�
1
2
+ 1

� times the original

workload processQ(t; r) with a renormalized service rater ! c�H+ 3
2
� 1

� r+ (1� c�H+ 3
2
� 1

� )m.

This theorem is the�-generalization of the Theorem 3.1 of [18] and includes it in the special

case where� = 2.

Scaling laws with particular significance can be obtained by considering the set of system

parameters satisfying the storage threshold exceedance criterion

� = P (Q(0; r) > b) = P (sup
��0

(A(� )� r� ) > b) (17)

Equation (17) can be interpreted as aquality of service(QoS) requirement, defining a storage

requirementb > 0, related to theprobability of overflow.

Consider the function

q(b; &) = P (sup
��0

(L�;H(� )� &� ) > b): (18)

So, forb = 1, q(1; &) = P (sup��0(L�;H(� )� &� ) > 1) (strictly decreasing for& � 0).

Theorem 4: The functionq(b; &) possess the scaling
February 11, 2001 DRAFT
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q(b; &) = q(1; b

3
2
�

1
��H

H� 1
2
+ 1
� &); (19)

Proof: We use only the self-similarity property of the fLm to show this scaling.

q(cb; &) = P

�
sup
��0

(
1

c
L�;H(� ) �

1

c
&� ) > b

�
=

P

�
sup
��0

(L�;H

�
(
1

c
)1=(H�

1
2
+

1
�
)�

�
�

1

c
&� ) > b

�
=

P

 
sup
��0

(L�;H(� )� c

3
2
�

1
�
�H

H�1
2
+ 1
� &� ) > b

!
=

q(b; c

3
2
� 1
�
�H

H�1
2
+ 1
� &):

For b = 1 we prove the scaling relation.

Taking into account the above scaling result, equation (17) can be rewritten as

� = q(
b

(�m)1=�
;
r �m

(�m)1=�
) = q(1;

 
b

(�m)1=�

! 3
2
�

1
��H

H� 1
2
+ 1
� r �m

(�m)1=�
): (20)

Corollary 3: The QoS requirement in (17) is equivalent to the “bandwidth allocation formula”

r = m+ q�1(1; �)�
1=�(H� 1

2
+ 1
� )

b�(
3
2
�H� 1

�
)=(H� 1

2
+ 1

�
)m

1=(�(H� 1
2
)+1)

: (21)

and to the “buffer dimensioning formula”
1 � �

�1=�(H�
1
2
+ 1

�
)
b

3
2
�

1
��H

H� 1
2
+ 1
� r

H� 1
2

H� 1
2
+ 1
� = �

1=�(H� 1
2
+ 1
� )

q�1(1; �); (22)

Proof: Taking the inverse function ofq(1; &) in (20), the following equation holds

(r �m)b(
3
2�H�

1
�
)=(H�

1
2+

1
�
)m

�1=�(H� 1
2
+ 1
�
)

= �
1=�(H� 1

2
+ 1
�
)

q�1(1; �);

or

r = m + q�1(1; �)�)
1=�(H� 1

2
+ 1
�
)

b�(
3
2�H�

1
�
)=(H�

1
2+

1
�
)m

1=(�(H� 1
2
)+1)

:

Substituting� = m=r to (21), we obtain the “buffer dimensioning formula”.

Let us now apply the above formulae to different type of input traffic:
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(i) The input is modeled as ordinary Brownian motion, i.e.,H = 1
2

and� = 2. In this case

(22) reduces to

b = b(�) = const � � � (1� �)�1: (23)

(ii) The input is modeled as ordinary L´evy motion, i.e.,H = 1
2

and0 < � � 2. In this case

we have

b = b(�) = const � �
1

��1 � (1� �)�
1

��1 : (24)

As for ordinary Brownian motion, the service rater has disappeared from (24).

(iii) In the fBm case� = 2 andH > 1
2
, the situation is different. ¿From the “buffer dimen-

sioning formula” (22), fixing the service rater and solving for the buffer requirementb as a

function of�, we obtain

b = b(�) = const � �1=(2(1�H))
� (1 � �)�H=(1�H); (25)

which is the (3.6) result presented in [18].

From the “bandwidth allocation formula” (21), fixingb and solving forr, we obtain

r = r(�) = const � �1=(2H�1) � (1 � �)�H=(H� 1
2
); (26)

i.e., (3.7) of [18].

(iv) The fractional Lévy input, is the more general case. Again, from (22), we express the

buffer requirementb as a function of utilization�

b = b(�) = const � �1=�(
3
2
� 1

�
�H)

� (1 � �)
�
H� 1

2
+ 1
�

3
2
�

1
��H : (27)

This is�-generalization of the result (3.6) in [18].

In order to have have the�-generalization of the result (3.7) in [18], from (21)

r = r(�) = const � �1=�(H�
1
2
)
� (1 � �)

�
(H� 1

2
+ 1
� )

(H� 1
2
) : (28)

In the following section we calculate an asymptotic lower bound for the QoS requirement�.

IV. A SYMPTOTIC LOWER BOUND FOR THEPROBABILITY OF BUFFER OVERFLOW

In this section we present a technique which leads to the calculation of an asymptotic lower

bound of the QoS requirement (17). Our approach is different of the ones used in the literature,

i.e., [2], [5], [8], [11], since we use the power series expansion of the probability distribution

function of the fLm.
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The following theorem provides a lower bound of the complementary distribution function of

the queue length:

Theorem 5: An asymptotic lower bound for the overflow probability is given by

� = P (Q(0; r) > b)���b
��( 3

2
�H� 1

�
); b!1 (29)

where

�� = M�(�m)

 
(3
2
�H)� � 1

�

!�
0
@ �(H �

1
2
) + 1h

(3
2
�H)� � 1

i
(r �m)

1
A�(H� 1

2
)+1

; (30)

and

M� =
�

��
�(� + 1) sin

��

2
; (31)

Proof:

Starting from (17) we have

� = P (Q(0; r) > b) � max
��0

P

�
L�;H(� )�

(r �m)

(�m)1=�
� >

b

(�m)1=�

�
:

Using the probability distribution function of the fLmp�;H(x; t), one can express the probabilityP (L�;H(� ) > B)

as

P (L�;H (� ) > B) =

1Z
B

dxp�;H(x; t):

In order to calculate the above probability asB !1, we use only the first term of the series (10), i.e.,

P (L�;H(� ) > B)'M�

��(H�
1
2 )+1

B�
; B !1;

whereM� is given by (31).

Hence, forB = (r�m)�+b

(�m)1=�
we get

P (Q(0; r) > b)'max
��0

(
M�(�m)

��(H�
1
2 )+1

((r �m)� + b)�

)
; b!1:

By differentiating the expression in the right side of the above equation, we find that the maximum is obtained

for � = �0, where

�0 =
�(H �

1

2
) + 1�

(3
2
�H)�� 1

�
(r �m)

b:
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By substituting�0 to find the maximum, we obtain the asymptotic given by (29), and the proof is complete.

In order to find the required capacityr to satisfy the QoS criterion approximately, we simply

solve (29) forr, i.e.,

r = m+ (M�=�)
1=(�(H� 1

2
)+1)

�1=(�(H�
1
2
)+1)m1=(�(H� 1

2
)+1)b

H� 3
2
+ 1
�

H� 1
2
+ 1
� : (32)

Comparing the above approximate requirement with the exact one given by the “bandwidth

allocation formula” (21), we see that they differ only by the factor(M�=�)
1=(�(H� 1

2
)+1).

The rate of decay in (29) is at most an algebraic function of the buffer size, and is in accor-

dance of the results reported in [5], and [8].

The above result encompasses previous results in the literature, related to traditional traffic

models. More specifically,

� For the Brownian case, i.e.,H = 1=2 and� = 2, the expression (29) reduces to the well-

known asymptotic provided by the exponential distribution.

� [11] analyzes a queue with oLm input.

� [18] provides an asymptotic bound for the fBm case.

V. SCALINGS FOR QUEUING DELAY IN THE FLM CASE

In this section we explore the queuing delay in a queue fed by fLm traffic, under various scal-

ing regimes. This study was motivated by the consequences of rapidly growing communications

capacity for the evolution of the Internet. For example, Kelly [10] argues that queuing delays be-

come small in comparison with propagation delays, giving new insights towards a self-managed

Internet.

We assume that traffic and capacity grow proportional in a queuing system, and we follow the

same notion as [10], to show the reader the generalized delay results for the fLm case.

Let a be the thevolumescaling parameter,b andc the speedandmultiplexingparameters:

the original workload at the interval[s; t], i.e.,A(t)�A(s), has been increased in volume bya,

speeded up byb, andc i.i.d. fLm streamsAi(t); i = 1; 2; � � � ; c have been multiplexed. There-

fore, the workload obtained after the scaling in the three regimes is

cX
i=1

a(Ai(bt)�Ai(bs)):

The buffer occupancy at timet of the new system becomes
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Q(t; a; b; c; r) = sup
0�s�t

(
cX

i=1

a(�m)1=�(L
(i)
�;H(bt)� L

(i)
�;H(bs))� abc(r�m)(t� s)); (33)

when the new workload is applied to (15).

SinceQ(t; a; b; c; r) describes the buffer occupancy, the queuing delay under the FIFO disci-

pline is (on average)

�(a; b; c) = Q(a; b; c)=abcr (34)

As Kelly [10] points out, the impact of the parametersa andb parameters are straight-forward:

�(a; b; c)
d
= �(1; b; c); �(a; b; c)

d
= b�1�(a; 1; c): (35)

In the following theorem we show how the multiplexing parameter impacts the queuing delay

(obviously,�(a; b; c) � �(a; b; 1)).

Theorem 6: The queuing delay of the multiplexed fLm streams obeys the following scaling

�(a; b; c)
d
= c�(��1)=(�(

3
2
�H)�1)�(a; b; 1): (36)

Proof: By multiplying�(a; b; 1) by c�(��1)=�(
3
2�H)�1 and using the definitions (33) and (34) we get

c�(��1)=�(
3
2�H)�1�(a; b; 1)

d
=

sup
0�s�t

 
c�(��1)=�(

3
2�H)�1

(�m)1=�(L
�;H

(bt) � L
�;H

(bs))

br
� c�(��1)=�(

3
2�H)�1

(r �m)

r
(t� s)

!
:

Further, changing the time variablest ands as

c�(��1)=�(
3
2�H)�1

� (t; s) ! t0; s0

yields

c�(��1)=�(
3
2�H)�1�(a; b; 1)

d
=

sup
0�s0�t0

 
c�(��1)=�(�m)1=�(L

�;H
(bt0) � L

�;H
(bs0))

br
�

(r �m)

r
(t0 � s0)

!
;

where the self-similar property of fLm was taken into account.

From the additive property of the stable processes, e.g., [23], we have that the superposition ofc fLm streams

with the same scale parameter� leads to renormalization of the scale by factorc1=�, i.e.,� ! c1=��. Hence, we

obtain
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c�(��1)=�(
3
2
�H)�1�(a; b; 1)

d
=

sup
0�s�t

0
BB@

cP
i=1

a(�m)1=�(L
(i)

�;H
(bt)� L

(i)

�;H
(bs))

abc
�

(r �m)

r
(t� s)

1
CCA :

It is easy to see that the right side of the last equation equalsQ(t; a; b; c; )=abc, i.e.,�(a; b; c).

VI. CONCLUSIONS

In this paper, we extend Mandelbrot’s work [15], dropping the assumption of finite variance

and falling into the stableH-sssi processes as the next larger class. We introduce fractional

Lev́y motion (fLm), which attains integral representation similar to fractional Brownian motion

(fBm) [15], keeping the same exponentsH�
1
2

for the integration kernel, and using the ordinary

symmetric Le´vy motion as an integrating process rather than ordinary Brownian motion. While

there are several other fractional stable motions in the literature [23], this is the first time that

fLm and its probability density function (or characteristic function) are introduced.

Based on fLm, we develop a parsimonious traffic model, suitable for traffic modeling in mod-

ern broadband networks. Since empirical data collected for a variety of communication networks

and applications exhibit self-similarity and heavy-tailed dependences, it is reasonable to apply

the “Fractional Le´vy traffic” model which captures these characteristics. Statistical analysis of

TCP traces and preliminary results justify our argument, and fLm seems to be quite promising

in describing the observed properties and behavior of today’s teletraffic.

We further elaborate all the well-known fractal queuing results obtained for Gaussian pro-

cesses. Both the scaling expressions and the lower asymptotic bound for the overflow probability

that are presented here encompass all results in the literature related to fBm and oLm.
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