
E�ective Bandwidths for TES Processes

Jiangbin Yang, Ioannis Lambadaris�

Broadband Networks Laboratory

Dept. of Systems & Computer Engineering

Carleton University

Ottawa, Ontario K1S 5B6, Canada Email: (ioannis,yang)@sce.carleton.ca

February 12, 2001

Abstract

In this paper, we derive the e�ective bandwidth functions of TES (Transform-Expand-Sample)

processes. These processes are particularly important for modeling of video and other multimedia

traÆc patterns found in broadband networks. Such processes are highly autocorrelated and have

general marginal distributions. To examine the impact of autocorrelation on e�ective bandwidths

and illustrate the computational procedure, we compute the e�ective bandwidth functions of

some speci�c TES processes with di�erent autocorrelation structures. We simulate some queues

with TES processes as input, numerically study the exponential decay of their queue length tail

probabilities, and show how well the derived e�ective bandwidth functions can characterize the

exponential decay rates.
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1 Introduction

TES (Transform-Expand-Sample) is a versatile methodology for modeling time series with general

marginal distributions and a broad range of autocorrelation functions [7]. The marginal distributions

and autocorrelation functions may be estimated from empirical data, or speci�ed theoretically. For

any given marginal distribution and autocorrelation function, TES can produce a sequence of random

variates exactly matching the marginal distribution and closely approximating the autocorrelation

function. A sequence of random variates generated by TES is called a TES process.

TES has been applied to video traÆc modeling, where the objective is to �nd good mathematical

models for video frame size sequences. Generally, video frame sizes from a source are autocorrelated.

Autocorrelation has signi�cant impact on the performance of a queueing system. Therefore, accurate

modeling of video traÆc should not only capture the marginal distribution of the frame sizes, but

also more importantly the characteristics of the autocorrelation function. TES is a convenient tool

capable of doing both simultaneously. [6] and [10] studied TES modeling of variable bit rate (VBR)

compressed video traÆc. [12] and [3] studied a composite TESmodel for MPEG coded video traÆc. [9]

studied a Markov-Renewal-Modulated TES model for modeling a full-length JPEG video traÆc trace.

E�ective bandwidth is a traÆc descriptor, which characterizes how much bandwidth should be

allocated to an input traÆc process in order to satisfy certain quality of service (QoS) requirements

for bu�er overow probability, queueing delay, etc.. A systematic review of e�ective bandwidth was

given by [4] and references therein. E�ective bandwidth has been applied to admission control and

resource management in works such as [1] and [13].

E�ective bandwidth of a traÆc process is a function of two free parameters representing a space

and time scaling respectively. Usually, we consider the limiting form of an e�ective bandwidth

function for the time parameter going to in�nity, and leave it as a function of the space parameter

only. E�ective bandwidth functions of some traÆc processes have been derived by [5], [1] and [4].
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For a stationary and ergodic process, the inverse of the e�ective bandwidth function (i.e., the value

of the space parameter for given e�ective bandwidth) is the asymptotic exponential decay rate of

the queue length tail probability of a queue with the process as input and the e�ective bandwidth as

service rate (a discussion and references on this can be found in [4]). The space parameter is called so

because it characterizes the asymptotic queue length distribution. By determining the exponential

decay rate using the e�ective bandwidth function, we can fairly evaluate the queueing performance.

Application of e�ective bandwidth is not limited to a single traÆc process. More importantly,

e�ective bandwidth is a convenient tool for queueing performance analysis of multiplexed or aggre-

gated traÆc processes. The e�ective bandwidth function of aggregated independent traÆc processes

is the sum of the e�ective bandwidth functions of the individual traÆc processes, which may be of

common or di�erent traÆc classes such as voice, video or data [4]. Therefore, knowing the e�ective

bandwidth function for each class of traÆc processes, we can easily obtain the e�ective bandwidth

function of the aggregated traÆc processes, and use it to study the queueing performance of the

multiplexed or aggregated traÆc processes.

The purpose of this paper is to derive the e�ective bandwidth function of general TES processes.

The rest of the paper is organized as follows. In Section 2, by approximating TES with its quantized

version, we derive the e�ective bandwidth function for TES when the traÆc process is considered

over a �nite time horizon (i.e., the time parameter is �nite). In Section 3, we prove that the e�ective

bandwidth exists as the time parameter goes to in�nity and derive the limiting form. In Section 4,

in examples, we compute the e�ective bandwidth functions of some speci�c TES processes with

di�erent autocorrelation structures. In Section 5, we simulate some queues with TES processes as

input, numerically study the exponential decay of the queue length tail probabilities, and compare

the exponential decay rate with the result of e�ective bandwidth. In Section 6, we summarize our

results and conclude.



Yang, Lambadaris: E�ective Bandwidths for TES Processes 4

2 Derivation of the E�ective Bandwidths over Finite Time Horizon

A TES process may be a TES+, TES�, or extended TES process with a Markov chain innovation

sequence [7] [8]. A TES+ process gives rise primarily to a positive lag-1 autocorrelation, and a TES�

process a negative lag-1 autocorrelation. When there is a structure in the burstiness of a traÆc

process, a Markov chain innovation sequence can be used to better capture the structure. In this

paper, we focus our derivation and analysis on TES+ processes. Derivation of e�ective bandwidth

functions for TES� and the extended TES with a Markov chain innovation sequence can be done in

a similar but more complicated way, and will be presented in future works.

Let fZn : n = 0; 1; 2; � � �g denote a TES+ process. This process can represent a sequence of video

frame sizes for video traÆc modeling (for example, [6], [12] [3], and [9]). Using similar notations

of [7],

Zn = D(U+
n );

D(�) = F�1Z (S�(�));

U+
n =

8>>><
>>>:

U0; n = 0;

< U+
n�1 + Vn >; n � 1:

FZ(�) is the marginal probability distribution function of Zn, < � > is the modulo-1 operator1,

and S�(�) is a stitching transformation2. U0 is a continuous uniform random variable in [0; 1), and

fVn : n = 1; 2; � � �g is an innovation sequence of independent and identically distributed (i.i.d.) ran-

dom variables, which can have an arbitrary distribution in (�1;1). Note that no matter what

distribution Vn has, the marginal distribution of fU+
n g is always uniform on [0; 1) by the construc-

1For any real x, < x >= x�maxfinteger N : N � xg. Thus, < 1:4 >= 0:4, and < �1:4 >= 0:6.
2For � 2 [0; 1] and y 2 [0; 1), S�(y) is de�ned to be y=� if y 2 [0; �) and (1� y)=(1� �) if y 2 [�; 1). S�(�) transforms

a uniformly distributed random variable on [0; 1) to another uniformly distributed random variable on [0; 1). For

� 2 (0; 1), S�(�) is continuous on the unit circle and smoothes the sample path discontinuities due to modulo-1 crossings

of point 0.
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tion. However, the distribution of Vn together with the stitching transformation determines the

autocorrelation structure of fU+
n g and fZng.

By de�nition [4], the e�ective bandwidth of fZn : n = 0; 1; 2; � � �g over a �nite time horizon of k

time units is

�(s; k) =
1

sk
logE(es

P
k�1

n=0
Zn); (1)

where s > 0 is the space parameter and integer k � 1. Generally, direct evaluation of ( 1) will

result in formulation of recursive non-tractable integral equations. To overcome this diÆculty, we

will �rst discretize the innovation density function of Vn, and then approximate the original TES

model with a so-called quantized TES (QTES) model described below. QTES has been shown as a

good approximation of TES in [11]. By using QTES, we will be able to derive a tractable solution

of ( 1) in matrix form.

In order to get a QTES process approximating the original TES process, we �rst discretize the

unit interval [0; 1) into (integer) M equal subintervals [0; 1
M
), [ 1

M
; 2
M
), � � �, and [M�1

M
; 1). Then,

we discretize the innovation probability density (mass) function of the original TES process. For

m = 0; 1; � � � ;M � 1, let

�m =
�1X
i=0

PfV1 2 [i+
m

M
; i+

m+ 1

M
)g; (2)

with
PM�1

m=0 �m = 1. Let fJn : n = 1; 2; � � �g be a sequence of i.i.d. discrete random variables such

that

P (Jn =
m

M
) = �m

for m = 0; 1; � � � ;M � 1, which will be the QTES innovation sequence.

We de�ne another sequence of discrete random variables fC+
n : n = 0; 1; 2; � � �g as follows:

C+
n =

8>>><
>>>:

C0; n = 0;

< C+
n�1 + Jn >; n � 1;

where C0 is a discrete uniform random variable in f0; 1
M
; � � � ; M�1

M
g, and < � > is the Modulo-1

operator. Then, the QTES process fZn : n = 0; 1; 2; � � �g approximating the original TES process is
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such that

Zn = D(Q+
n );

where

D(�) = F�1Z (S�(�)) and Q
+
n =

M�1X
m=0

1
fC

+
n =

m

M
g

m+Wn

M
:

FZ(�) is the marginal probability distribution function of the original TES process, S�(�) is a stitching

transformation as de�ned in the TES model, 1 is the indicator function, and fWn : n = 0; 1; 2; � � �g is

a sequence of i.i.d. continuous uniform random variables in [0; 1). Note that the marginal distribution

of fQ+
n g is a continuous uniform distribution on [0; 1).

For m = 0; 1; � � � ;M � 1 and integer k � 1, de�ne the conditional e�ective bandwidth of the

QTES process as

�m(s; k) =
1

sk
logE(es

P
k

n=1
Zn jC+

0 =
m

M
): (3)

By the stationarity of fC+
n : n = 0; 1; � � �g, for any integer l � 0.

�m(s; k) =
1

sk
logE(e

s
P

l+k

n=l+1
Zn
jC+

l =
m

M
): (4)

Let < �jM > denote the modulo-M operator3 for positive integer M . Then, by the Markovian

property of fC+
n : n = 0; 1; � � �g,

�m(s; k + 1)

=
1

s(k + 1)
logE(es

P
k+1

n=1
Zn jC+

0 =
m

M
)

=
1

s(k + 1)
log

M�1X
l=0

E(es
P

k+1

n=1
Zn jC+

1 =
l

M
) � P (C+

1 =
l

M
jC+

0 =
m

M
)

=
1

s(k + 1)
log

M�1X
l=0

E(esD(Q+

1
)
jC+

1 =
l

M
) � E(es

P
k+1

n=2
Zn jC+

1 =
l

M
) � �<l�mjM>:

For l = 0; 1; � � � ;M � 1, let

gs;D(l) = E(esD(Q+

1
)
jC+

1 =
l

M
)

3For any real x and positive integer M , < xjM >= x�M �maxfinteger N : N � x

M
g. Thus, < 36j10 >= 6, and

< �36j10 >= 4.
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=

Z 1

0
esD( l+u

M
)du: (5)

Then, because of ( 4),

�m(s; k + 1) =
1

s(k + 1)
log

M�1X
l=0

gs;D(l) � e
sk�l(s;k) � �<l�mjM>;

or equivalently

es(k+1)�m(s;k+1) =
M�1X
l=0

gs;D(l) � e
sk�l(s;k) � �<l�mjM>; (6)

for k � 1. Similarly, for k = 0 we have

�m(s; 1) =
1

s
logE(esZ1 jC+

0 =
m

M
)

=
1

s
log

M�1X
l=0

gs;D(l) � �<l�mjM>;

or equivalently

es�m(s;1) =
M�1X
l=0

gs;D(l) � �<l�mjM>: (7)

For k � 1, we de�ne M -element column vectors

�(s; k) = (esk�0(s;k); esk�1(s;k); � � � ; esk�M�1(s;k))T :

For the case of k = 0, we pose

�(s; 0) = 1 = (1; 1; � � � ; 1)T :

We also de�ne the M -dimensional square matrices

Gs;D =

2
66666666666666664

gs;D(0) 0 � � � 0 0

0 gs;D(1) � � � 0 0

...
...

. . .
...

...

0 0 � � � gs;D(M � 2) 0

0 0 � � � 0 gs;D(M � 1)

3
77777777777777775

;
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and

H+ =

2
66666666666666664

�0 �1 �2 � � � �M�1

�M�1 �0 �1 � � � �M�2

�M�2 �M�1 �0 � � � �M�3

...
...

...
. . .

...

�1 �2 �3 � � � �0

3
77777777777777775

:

Then, from ( 6) and ( 7), for k � 1,

�(s; k) = H+Gs;D�(s; k � 1) = (H+Gs;D)
k1: (8)

Then, the e�ective bandwidth

�(s; k)

=
1

sk
logE(es

P
k�1

n=0
Zn)

=
1

sk
log

M�1X
m=0

1

M
E(es

P
k�1

n=0
Zn jC+

0 =
m

M
)

=
1

sk
log

M�1X
m=0

1

M
gs;D(m)es(k�1)�m(s;k�1)

=
1

sk
log(

1

M
1
T
Gs;D�(s; k � 1))

=
1

sk
log(

1

M
1
T
Gs;D(H

+Gs;D)
k�11): (9)

It should be noted that a TES process is entirely speci�ed by the innovation density (mass)

function, the desired marginal distribution, the stitching transformation, and the initial distribution

of the innovation. In turn, for given space parameter s and time parameter k, the e�ective bandwidth

of a TES process is totally determined by these four factors. This can be seen in ( 9), where actually

the vector 1
M
1 is the initial distribution of the innovation, H+ is composed of the discretized values

of the innovation density (mass) function, and Gs;D for given s is determined by the desired marginal

distribution and the stitching transformation.
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3 Perron-Frobenius Theory for In�nite Time Horizon

In this section, by applying the Perron-Frobenius theory, we derive the e�ective bandwidth over an

in�nite time horizon, i.e.,

�(s) = lim
k!1

�(s; k) (10)

for s > 0. We will prove that

�(s) =
1

s
log �(H+Gs;D); (11)

where matrix function �(�) takes the spectral radius of a matrix as its value. We will use the Frobenius

theorem and a proposition in [2].

Theorem 1 (Frobenius, Thm.2, Ch.XIII, [2]) An irreducible non-negative matrix A always has

a positive characteristic value r that is a simple root of the characteristic equation. The moduli of

all the other characteristic values do not exceed r. To the \maximal" characteristic value r, there

corresponds a characteristic vector with positive coordinates.

Proposition 1 (Proposition 2, x6, Ch.XIII, [2]) A non-negative matrix A � 0 with the maxi-

mal positive characteristic value r and with a corresponding characteristic vector z = (z1; z2; � � � ; zM ) >

0 is similar to the product of r and a stochastic matrix P :

A = ZrPZ�1;

where matrices Z = diag[zi]
M
i=1; and P = 1

r
Z�1AZ:

By the Proposition,

Ak = rkZP kZ�1:

Since P is a stochastic matrix, P k is a stochastic matrix as well.

We now prove ( 11). If the probability mass �0 = 1, it is easy to verify that ( 11) holds. Suppose

that �0 2 [0; 1). Then the matrix H+ is irreducible and non-negative, and so is H+Gs;D. Let

r = �(H+Gs;D)
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be the spectral radius, i.e., the maximal characteristic value of the matrix H+Gs;D. Then, using the

notations of matrices Z and P de�ned in the previous Proposition, for k � 1, from ( 9),

�(s; k)

=
1

sk
log(

1

M
1
T
Gs;D(H

+Gs;D)
k�11)

=
1

sk
log(

1

M
1
T
Gs;D(r

k�1ZP k�1Z�1)1)

=
1

s
log r +

1

sk
log(

1

M
1
T
Gs;Dr

�1(ZP k�1Z�11)):

Z�11 is a positive vector, and for any k � 1, P k�1 is a stochastic (transition probability) matrix.

Hence, P k�1Z�11 is a positive vector. Z is positive diagonal. Therefore, ZP k�1Z�11 is a positive

vector, and all its elements are upper bounded by max1�i�Mfzig �max1�i�Mfz�1i g independent of

k. Since Gs;D is a positive diagonal matrix, all the elements of Gs;Dr
�1ZP k�1Z�11 are positive and

upper bounded by 1
r
max0�l�M�1fgs;D(l)g �max1�i�Mfzig �max1�i�Mfz�1i g independent of k, and

so is 1
M
1
T
Gs;Dr

�1ZP k�1Z�11. Therefore,

�(s) =
1

s
log r =

1

s
log �(H+Gs;D):

This completes the proof of ( 11).

4 Computation of E�ective Bandwidths of Speci�c TES Processes

In this section, taking the exponential distribution as an example of the marginal distribution, using

( 11) we will compute the e�ective bandwidth functions of three TES processes that are i.i.d.,

moderately autocorrelated, and highly autocorrelated, respectively. Without loss of generality, we

will assume no stitching for simplicity.

For exponential distribution with mean 1, the inverse probability distribution function is

F�1Z (y) = log
1

1� y
:
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Then, for l = 0; 1; � � � ;M � 1 and s > 0, by ( 5),

gs;D(l) =

Z 1

0

M s

(M � l � u)s
du:

For l = 0; 1; � � � ;M � 2, gs;D(l) exists for any s > 0. However, for l = M � 1, gs;D(l) exists only for

0 < s < 1. For 0 < s < 1,

gs;D(l) =
M s

1� s
[(M � l)1�s � (M � l � 1)1�s];

for any l = 0; 1; � � � ;M � 1. Thus, we obtain the matrix Gs;D.

For any given innovation density (mass) function of TES process, �m for m = 0; 1; � � � ;M �

1 can be obtained according to ( 2). Then, H+ can be obtained. In this section, we consider

three continuous uniform innovation density functions symmetric around 0 with di�erent lengths

of support: 1, 1=2, and 1=8, respectively. Figure 1 shows the three innovation density functions.

These three innovation density functions together with the exponential marginal distribution will

generate three TES processes that are i.i.d., moderately autocorrelated, and highly autocorrelated,

respectively. Computation of the spectral radius of Gs;DH
+, and thus the e�ective bandwidth

functions ( 11), can be performed by using software such as Matlab. Numerical results (e.g., Figure 2)

show that the computed e�ective bandwidths converge asM gets larger. Table 1 and Figure 3 present

some of the computed results with M = 20, 160 and 1280 for the i.i.d., moderately autocorrelated

and highly autocorrelated TES processes, respectively.

For the i.i.d. TES process with exponential marginal distribution of mean 1, explicit form of the

e�ective bandwidth function can be derived directly from the de�nition ( 1):

�(s) =
1

s
log

1

1� s
; (12)

for s 2 (0; 1). As a check formula, this veri�es the e�ective bandwidth function values for the i.i.d.

TES process computed from the matrix form solution ( 11), such as the values shown in the second

column of Table 1.
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Figure 1: The three innovation probability density functions for generating (1) i.i.d., (2) moderately

autocorrelated, and (3) highly autocorrelated TES processes.
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Figure 2: Convergence of the computed e�ective bandwidths at s = 0:1 with respect to M for the

moderately autocorrelated TES process.
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Figure 3: E�ective bandwidth functions of the three TES processes with the same marginal exponen-

tial distribution of mean 1 but di�erent autocorrelation structures. \*" plots the analytical e�ective

bandwidth function ( 12) for the i.i.d. TES process.
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i.i.d. moderately autocorrelated highly autocorrelated

s = 0:01 1.0050 1.012 1.18

s = 0:1 1.0536 1.130 2.04

s = 0:2 1.1157 1.278 2.38

s = 0:5 1.3863 1.791 3.05

s = 0:9 2.5584 3.203 4.56

Table 1: E�ective bandwidths at di�erent values of the space parameter s of the three TES processes.

5 Comparison with Tail Probabilities of Simulated Queues

According to the e�ective bandwidth theory, for a stationary and ergodic process, if �(s) = limk!1 �(s; k)

exists, then for a given value of e�ective bandwidth or service rate c, s = ��1(c) is the asymptotic

exponential decay rate of the tail probability of queue length distribution for an in�nite-size bu�er,

or that of the bu�er overow probability for a �nite-size bu�er.

Suppose a TES process of video frame sizes. The frames are arriving at equally-spaced time

instants to a queue of constant service rate c = �(s). Then, we have a D/1
c
TES/1 queueing system,

where the interarrival times of frames are constant (deterministic) and the service times of frames are

the frame sizes divided by the service rate c. Suppose that the bu�er size is in�nite, and we will focus

on the tail probabilities of the queue length distributions. (Bu�er overow probabilities for �nite-size

bu�er can be thus approximated.) We will evaluate the tail of the queue length distributions, and

compare the exponential decay rate, if there is, with s = ��1(c).

We have simulated the queueing system in OPNET. The three TES processes of di�erent auto-

correlation structures in Section 4 are considered. In the simulation, frames arrive at every second

and the frame sizes have an exponential distribution with mean 1000 bits. Therefore, the \time unit"
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(constant interarrival time) is 1 second, and the \workload unit" is 1000 bits. (The 1 second time unit

is assumed for simplicity of presentation. For MPEG video, the time unit would be 1=30 second.)

The simulation time is 10 hours. Therefore, 36000 frames are generated and 36000 observations of

queue length upon arrival are collected for each of the simulated queueing system. Based on the

queue length observations, empirical cumulative distribution functions (CDF) can be computed in

OPNET. Then, the empirical tail probability is one minus the corresponding empirical CDF value.

For �xed service rate c = 1:130Kb=s, the theoretical exponential decay rates from the e�ective

bandwidth functions s = ��1(c) can be computed as 0:2225 (workload unit)�1, 0:1 (workload unit)�1,

and 0:008 (workload unit)�1 for the i.i.d., moderately autocorrelated, and highly autocorrelated TES

processes, respectively. Figure 4 presents the results for this case.

On the other hand, we can choose the same s = 0:1(1000bits)�1 for all the three TES processes.

The e�ective bandwidths corresponding to the row of s = 0:1 in Table 1 are therefore determined

to be the service rates c = �(s) for the three TES processes, which are 1:054 Kb/s, 1:130 Kb/s, and

2:040 Kb/s, respectively. Figure 5 presents results for this case.

From either Figure 4 or Figure 5, the following points can be made regarding the empirical queue

length distribution tail behaviors.

� The logarithms of empirical tail probabilities decay approximately linearly, i.e., the tail prob-

abilities decay exponentially, except for the very large queue lengths (i.e., the very far end of

the tails) observed during simulation. This is due to the increased variance of the experiment

since loss events (i.e. events when the bu�er exceeds a threshold) become more rare. This can

be overcome by a) running longer simulations in order to further reduce the variance of our

experiments (we show some results shortly!) or b) by running simulations based on Importance

Sampling which is a method for variance reduction. This is however beyond the scope of the

current paper and research towards this direction is in progress.
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Figure 4: Plots of the logarithms of empirical tail probabilities of the queue length distributions of

the simulated D/1
c
TES/1 queueing systems, where the service rate is �xed as c = 1:130Kb=s and

the theoretical exponential decay rates from the e�ective bandwidth functions s = ��1(c) vary. The

dotted line is passing the origin and with the respective slope �s.
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Figure 5: Comparison of the exponential decay rates s = 0:1 from the e�ective bandwidth functions

with the plots of the logarithm of empirical tail probability of the queue length distributions of the

simulated D/1
c
TES/1 queueing systems, where the service rates c = �(s) vary. The dotted line is

passing the origin and with slope �s.
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� The plots of the logarithms of empirical tail probabilities are roughly parallel to the straight

line of slope �s passing the origin. This shows that s = ��1(c) is very close to the actual

exponential decay rate of the queue length distribution tail probabilities.

� The plots of the logarithms of empirical tail probabilities are a little bit below or very close to

the straight line of slope �s passing the origin. That is, exp(�sB) is roughly an upper bound

of the tail probability at queue length B.

In order to reduce the variance of the simulations and get more accurate numerical results we

have run longer simulations. The longer the simulation, the more observations of large values can be

obtained. In Figures 6, we present results on the empirical queue length distribution tail probabilities

computed from the original (10 hour simulation time) simulation, and a 50 time longer simulation

of the queueing system fed by the moderately autocorrelated TES process. For the 50 time longer

simulation, the plot of logarithms of empirical tail probabilities for queue lengths from 0 to 85000

bits is roughly linear, while there is a dropping end before 67000 bits for the original simulation.

This tells us that the logarithms of the \real" tail probabilities decay linearly, which can be veri�ed

by longer and longer simulation.

Discussion of the general issues on the biased-ness of empirical CDF and its impact on perfor-

mance analysis is out of the scope of this paper. Nevertheless, clari�cation on the rapid dropping

behavior of the plots of logarithms of the empirical tail probabilities, together with the �rst three

points made previously in this section, helps us reach that (i) the tail probabilities of the queue

length distributions decay exponentially, and (ii) the e�ective bandwidth functions can be used to

characterize the exponential decay rate.
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Figure 6: Comparison of the empirical queue length distribution tail probabilities computed from

the original simulation to those from a 50 time longer simulation of the queueing system with the

moderately autocorrelated TES process.
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6 Summary and Conclusion

In this paper, we have derived the e�ective bandwidth functions of TES processes for video traÆc

modeling. We have computed the e�ective bandwidth functions of some speci�c TES processes with

di�erent autocorrelation structures as examples. The results of the e�ective bandwidth functions

show that to meet roughly the same QoS requirement, the more autocorrelated the traÆc process,

the more bandwidth should be allocated to it. We have simulated queues with TES processes as

input, numerically studied the exponential decay of the queue length tail probabilities, and compared

the exponential decay rates with the space parameter from the e�ective bandwidth functions. The

results show that the e�ective bandwidth functions can well characterize the TES traÆc processes.

While TES is a convenient tool for video traÆc modeling, the e�ective bandwidth functions of

TES processes will facilitate queueing performance analysis of video traÆc processes modeled by

TES, eÆcient network design and video traÆc management. Future work is on detailed analysis

of exact video traces and use of e�ective bandwidth for bu�er dimensioning. Extension to autore-

gressive modular processes [8] is currently in progress, which are generalized TES processes with

autocorrelated innovation sequence.
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