
Performance Evaluation of Service
Discovery Strategies in Ad Hoc

Networks

by

Honghui Luo

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

Master of Science

Information and Systems Science

School of Computer Science

Carleton University

Ottawa, Ontario

October 2003

c© Copyright

2003, Honghui Luo

The undersigned hereby recommend to

The Faculty of Graduate Studies and Research

Acceptance of the thesis,

Performance Evaluation of Service Discovery Strategies in

Ad Hoc Networks

submitted by

Honghui Luo

in partial fulfilment of the requirements for the degree of

Master of Science

Information and Systems Science

Dr. Douglas Howe

(Director, School of Computer Science)

Dr. Michel Barbeau

(Thesis Supervisor)

Carleton University

October 2003

ii

Abstract

Service discovery is an important and necessary component of ad hoc net-

works. To fit within the context of ad hoc networks, a Post-query model with

several service discovery strategies named Post-query strategies have been pro-

posed, by Barbeau and Kranakis, which focus on locating services over an ad

hoc network. Each strategy consists of a sequence of Post-query protocols exe-

cuted in rounds. They proposed four types of Post-query strategies: the greedy,

incremental, uniform memoryless and with memory strategies. Inspired by these

proposals, we define the conservative Post-query strategy. We give the detailed

design and implementation of these five strategies. We also conduct a simulation

of these five strategies in combination with two types of ad hoc routing protocols:

Dynamic Source Routing (DSR) (a source initiated on-demand routing protocol)

and Destination-Sequenced Distance Vector (DSDV) (a table-driven routing pro-

tocol). Through simulation, the performance of the five Post-query strategies

when combined with the DSR protocol and DSDV protocol are evaluated, in

terms of success rate, number of transmitted messages and average waiting time.

Our main conclusions are as follows. The greedy strategy achieves a very high

success rate with the lowest average waiting time and highest number of trans-

mitted messages of all the strategies. The conservative strategy can only achieve

a high success rate in a high dynamic ratio ad hoc network. The incremental

strategy can also achieve a high success rate with a low number of transmitted

messages, while it has the longest average waiting time of all the strategies. The

uniform memoryless strategy uses a relatively low amount of network bandwidth

if the sizes of the posting and querying sets are relatively low. The with mem-

ory strategy can achieve a high success rate, while each node builds a cache of

previously visited nodes. Compared with the uniform memoryless strategy, the

success rate of this strategy is improved by 10.34% when combined with the DSR

protocol, and by 16.5% when combined with the DSDV protocol.

iii

Acknowledgements

It took me a long trip to find my own passion. I sincerely thank my thesis

supervisor Dr. Michel Barbeau, especially for his wisdom, guidance, advice and

support, which gave me more prompting whenever I needed it, his great patience

which never gave up encouraging me has helped me throughout the whole thesis.

During the process of my thesis, I also received warm-hearted assistance and

support from many other friends. I wish to express my deep gratitude to our

project group members, especially Huan Qi, Maoning Wang , and Zheyin Li

for their generous help, invaluable discussions and kindly encouragement. I also

wish to acknowledge Tao Wan and Yufang Zhu for their in-depth and constructive

comments on my thesis. I also received a lot of help on the LATEX tutorial from

Miguel Vargas Martín and Hua Guo.

Finally, I leave my special thanks to my family: my husband Qing, my parents

Yuzhen Zhang and Jixian Luo, my sisters Hongmei Luo and Feng Zhang for their

endless love. Their great courage to overcome any kind of difficulty inspired me

to accomplish this work.

iv

Contents

1 Introduction 1

1.1 Research context . 1

1.1.1 Service Discovery in ad hoc networks 1

1.1.2 History of the Post-query model 4

1.2 Contribution . 7

1.3 Outline . 8

2 Review of Literature 10

2.1 Ad hoc routing protocols . 10

2.1.1 Destination Sequenced Distance Vector Routing Protocol . 11

2.1.2 Dynamic Source Routing Protocol 13

2.2 Existing approaches . 15

2.2.1 The Post-query strategies 15

2.2.2 Service discovery in on-demand ad hoc networks 19

2.3 Related Work . 20

2.3.1 Service discovery in single-hop ad hoc networks 22

2.3.2 Konark - A service discovery delivery protocol for ad hoc

networks . 23

2.3.3 Service discovery protocol based on On-Demand Multicast

Routing Protocol . 25

v

3 Detailed Design of the Post-query Strategies 27

3.1 Architecture design . 28

3.2 The message format of the Post-query protocol 28

3.3 Common design features of these five Post-query strategies 29

3.4 The greedy Post-query strategy 30

3.5 The conservative Post-query strategy 36

3.6 The incremental and uniform memoryless Post-query strategies . . 39

3.7 The with memory Post-query strategy 42

4 Simulation and Implementation 46

4.1 Simulation environment . 46

4.2 Movement scenarios . 48

4.3 Parameter selection . 51

4.4 Implementation of the five Post-query strategies 52

4.4.1 The implementation of the Post and Query agents 53

4.4.2 The implementation of the message control objects 56

5 Performance Evaluation 60

5.1 Performance metrics . 60

5.2 Results and discussion . 62

5.2.1 Greedy: Post-broadcast-h, query-broadcast-h strategy with

h equal to the network diameter 62

5.2.2 Conservative: Post-broadcast-h, query-broadcast-h strat-

egy with h equal to one 69

5.2.3 Incremental: Post-incremental, query-incremental strategy 74

5.2.4 Uniform memoryless: Post-to-l, query-l′ strategy 80

5.2.5 With memory: Post-to-l, query-l′ with memory strategy . 86

5.3 Summary . 92

vi

6 Conclusions and Future Work 98

6.1 Conclusions . 98

6.2 Future work . 99

A Message Sequence Chart 96 Standard 102

vii

List of Tables

4.1 The link changes, route changes and dynamic ratios of the three

mobility models . 50

4.2 Simulation and implementation parameters 51

5.1 Performance comparison of the five Post-query strategies when

combined with the DSR protocol and DSDV protocol 94

viii

List of Figures

2.1 Activity diagram of receiving an SREQ packet of an intermediate

node . 21

3.1 Architecture of protocol stack . 28

3.2 The Post-query protocol message format 29

3.3 Sequence diagram of the greedy strategy: server broadcasts Servi-

cePost message . 32

3.4 Sequence diagram of the greedy strategy: client broadcasts Ser-

viceQuery message . 35

3.5 Sequence diagram of the conservative strategy: server broadcasts

ServicePost message . 37

3.6 Sequence diagram of the conservative strategy: client broadcasts

ServiceQuery message . 38

3.7 Sequence diagram of the incremental and uniform memoryless strate-

gies: server unicasts ServicePost message 40

3.8 Sequence diagram of the incremental and uniform memoryless strate-

gies: client unicasts ServiceQuery message 41

3.9 Sequence diagram of the with memory strategy: server unicasts

ServicePost message . 43

3.10 Sequence diagram of the with memory strategy: client unicasts

ServiceQuery message . 44

ix

4.1 Combination of the components of the data and control sides . . . 53

4.2 Activity diagram of the control mechanism of the five Post-query

strategies . 57

5.1 Post-broadcast-h, query-broadcast-h strategy with h equal to the

network diameter DSR success rate 63

5.2 Post-broadcast-h strategy, query-broadcast-h strategy with h equal

to the network diameter DSDV success rate 63

5.3 Post-broadcast-h, query-broadcast-h strategy with h equal to the

network diameter DSR num. of transmitted messages 66

5.4 Post-broadcast-h, query-broadcast-h strategy with h equal to the

network diameter DSDV num. of transmitted messages 66

5.5 Post-broadcast-h, query-broadcast-h strategy with h equal to the

network diameter DSR and DSDV average waiting time 68

5.6 Post-broadcast-h, query-broadcast-h strategy with h equal to one

DSR success rate . 70

5.7 Post-broadcast-h, query-broadcast-h strategy with h equal to one

DSDV success rate . 70

5.8 Post-broadcast-h, query-broadcast-h strategy with h equal to one

DSR num. of transmitted messages 72

5.9 Post-broadcast-h, query-broadcast-h strategy with h equal to one

DSDV num. of transmitted messages 72

5.10 Post-broadcast-h, query-broadcast-h strategy with h equal to one

DSR and DSDV average waiting time 74

5.11 Post-incremental, query-incremental strategy DSR success rate . . 75

5.12 Post-incremental, query-incremental strategy DSDV success rate . 75

5.13 Post-incremental, query-incremental strategy DSR num. of trans-

mitted messages . 77

x

5.14 Post-incremental, query-incremental strategy DSDV num. of trans-

mitted messages . 78

5.15 Post-incremental, query-incremental strategy DSR and DSDV av-

erage waiting time . 79

5.16 Post-to-l, query-l′ DSR success rate 81

5.17 Post-to-l, query-l′ DSDV success rate 81

5.18 Post-to-l, query-l′ DSR num. of transmitted messages 83

5.19 Post-to-l, query-l′ DSDV num. of transmitted messages 84

5.20 Post-to-l, query-l′ DSR and DSDV average waiting time 85

5.21 Post-to-l, query-l′ with visited nodes DSR success rate 87

5.22 Post-to-l, query-l′ with visited nodes DSDV success rate 88

5.23 Post-to-l, query-l′ with visited nodes DSR num. of transmitted

messages . 89

5.24 Post-to-l, query-l′ with visited nodes DSDV num. of transmitted

messages . 90

5.25 Post-to-l, query-l′ with visited nodes DSR and DSDV average wait-

ing time . 91

A.1 Message sequence chart 96 example 102

xi

List of Acronyms

AODV Ad hoc Distance Vector Routing

AWT Average Waiting Time

DA Directory Agent

DCF Distributed Coordination Function

DR Dynamic Ratio

DSDV Destination Sequenced Distance Vector

DSR Dynamic Source Routing

LC Link Change

MAC Medium Access Control

NS Network Simulator

NTM Number of Transmitted Messages

ODMRP On-Demand Multicast Routing Protocol

OLSR Optimized Link State Routing

RF Radio Frequency

SA Service Agent

SDP Service Discovery Protocol

SLP Service Location Protocol

SR Success Rate

SREP Service Reply

SREQ Service Request

TORA Temporally-Ordered Routing Algorithm

UA User Agent

ZRP Zone Routing Protocol

xii

Chapter 1

Introduction

This chapter starts by introducing the context in which this thesis has been

written, followed by a history of the research topic. Then, the contributions are

summarized and finally, an outline of the thesis is presented.

1.1 Research context

1.1.1 Service Discovery in ad hoc networks

An ad hoc network is a multihop wireless network consisting of a set of mobile

nodes not requiring any preexisting network infrastructure. It is used in situ-

ations where temporary network connectivity is needed. Some examples of the

possible uses of ad hoc networks include emergency disaster relief and students

using laptop computers to exchange course information. Within this kind of

1

1.1. RESEARCH CONTEXT 2

network, every node is free to move randomly and get connected arbitrarily to

other nodes. Every node plays the role of router as well as host. Thus, such a

network’s wireless topology may change rapidly and unpredictably. In contrast

to traditional wired networks, ad hoc networks have lower bandwidth and are

more subject to the influences of interference, fading and noise. Highly dynamic

changes of topology imply an increased control message overhead to maintain the

connectivity. Bandwidth should be used efficiently, and battery power should be

conserved. All the aforementioned constraints bring new challenges not only to

network routing, but also to application layer protocols such as the service dis-

covery protocol. Over the past few years, much effort has been put into inventing

effective ad hoc routing protocols under these constraints. These routing proto-

cols can generally be categorized as on-demand routing protocols or table-driven

routing protocols. They offer good support for application layer protocols.

Service discovery is defined as the problem of automatically locating different

services within a network. Services are entities available for use by a network

node. For example, a service could be a printer, an image scanner, or a file

server. Currently there is a variety of service discovery protocols emerging in the

network community. The most well known so far are the Service Location Protocol

(SLP) defined by IETF [Gut99]; Jini, defined by Sun Microsystems [Sun99]; and

the Service Discovery Protocol (SDP), defined by Bluetooth Forum [Blu01].

SLP is designed for TCP/IP networks and is scalable up to large enterprise

1.1. RESEARCH CONTEXT 3

networks. The SLP architecture contains three main components: User Agent

(UA), which locates services on behalf of a client; Service Agent (SA), which pro-

vides information about a service; and Directory Agent (DA), which is optional.

A DA caches service information received from SAs and replies to service requests

from UAs. For small networks, it is more efficient to deploy SLP without a DA.

SLP can operate in a distributed manner (without a DA) or in a centralized

manner (with one or more DAs).

The Jini technology is written in the programming language Java. The archi-

tecture of Jini consists of three main components: service provider, which is the

front-end of a service available on a network; client, which is a user of services;

and lookup service, which is a central node where service providers register their

services (similar to the DA of SLP).

Bluetooth is a short range ad hoc network technology. Bluetooth networks are

also named piconets or scatternets. A piconet has one device called the master

which can support up to seven slave Bluetooth devices. A set of interconnected

piconets forms a scatternet. In a piconet, all of the devices use the same radio

channel. Bluetooth employs SDP for locating services provided by or available

through other Bluetooth enabled devices. SDP defines the SDP server and SDP

client. To find a service, an SDP client unicasts an SDP request to SDP servers

one by one. SDP servers either send back SDP responses or error responses. In

contrast to SLP and Jini, SDP is designed specifically for the Bluetooth networks,

1.1. RESEARCH CONTEXT 4

where the set of services that are available change dynamically based on the Radio

Frequency (RF) proximity of devices in motion.

With the rising number of Internet services and increased use of wireless

devices, service discovery will be a very important component in self-organizing

ad hoc networks. Nevertheless, it is very challenging to design and implement

service discovery protocols in such networks because of their characteristics. SLP

and Jini do not specifically target ad hoc networks.

Efficient service discovery on ad hoc networks requires a balance between

performance (success rate) and cost (number of transmitted messages and average

waiting time). The following question has been asked: How fast and cheaply can a

service be located under a dynamic changing topology which results in unreliable

network communication? An attempt to answer this question has been proposed

by Barbeau and Kranakis [Bar03]. They introduced a Post-query model focused

on locating services in an ad hoc network.

1.1.2 History of the Post-query model

The Post-query model of Barbeau and Kranakis is based on the distributed match-

making, put forward by Mullender and Vitányi [Mul88] and Kranakis and Vitányi

[Kra92]. This distributed match-making paradigm refers only to traditional net-

works. In network computing, the client/server model is used. The client sends

a request to the server about a service and the server replies to the client about

1.1. RESEARCH CONTEXT 5

that service. Each node in the network is either a client or a server. Most dis-

tributed systems have been designed to use this client/server model. Client and

server processes residing in different nodes may need to find each other, without

knowing the each other’s host address in advance. For each server s in the net-

work, there is a set of nodes P (s) to which s posts its service. For a client c in

the network which looks for a particular service provided by a server s, there is

a set of nodes Q(c). Let 1, 2, . . . , k be the k different types of services the net-

work has and let K = {1, 2, . . . , k}. A Post-query protocol is a pair of functions

(P (s), Q(c)), where P (s) is the posting protocol, and Q(c) is the query protocol.

Barbeau and Kranakis [Bar03] adapt and extend the distributed match mak-

ing model to the context of ad hoc networks. They define algorithms for post-

ing and querying services named Post-query protocols, and Post-query strategies

which are time dependent Post-query protocols, executed in rounds modeling

post-query interactions between clients and servers in an ad hoc network. They

assume that routes to services are discovered before or at the same time as ser-

vices. In an ad hoc network, at each round r, the servers first post services

they can offer to other nodes according to a posting protocol Pr, and the clients

then query other nodes in the network according to a querying protocol Qr. A

Post-query strategy consists of a sequence (P1, Q1), . . . , (Pr, Qr), . . . , (PR, QR) of

Post-query protocols that adapt to the topological changes over time in an ad hoc

network. In each round, posting is executed first and then querying is conducted.

1.1. RESEARCH CONTEXT 6

The Post-query strategies include:

1. The greedy post-query strategy: This is the post-broadcast-h, query-broadcast-

h strategy with h equal to the network diameter. All the servers post to

all the nodes, and all the clients query all the nodes of the network using

a network broadcast mechanism based on a flooding algorithm. It is called

greedy because it consumes significant network resources.

2. Based on the greedy strategy of Barbeau and Kranakis, we define an-

other strategy called the conservative Post-query strategy. This is a post-

broadcast-h, query-broadcast-h strategy with h equal to one. It uses a

network one-hop broadcast mechanism. Compared with the greedy strat-

egy, this strategy is conservative by eliminating many of the transmitted

messages on the network.

3. The incremental post-query strategy: This is the post-incremental, query-

incremental strategy. Servers and clients post to and query from a small

set of nodes in the first round and increase their set size gradually. This

strategy can save network resources.

4. The uniform memoryless post-query strategy: This is a post-to-l, query-l′

strategy consisting of uniform and memoryless rounds. Servers post all the

services they can offer to a random set of size l and clients query a random

set of size l′.

1.2. CONTRIBUTION 7

5. The with memory post-query strategy: This is a post-to-l, query-l′ strategy

combined with a memory usage strategy. The memory is used to store the

addresses of the nodes posted to or queried from before. Each new round

only involves posting (querying) previously unused nodes. Each node in

the ad hoc network builds a cache to store the addresses of the nodes it has

already contacted.

With the proposition of these five Post-query strategies, a uniform model

needs to be constructed to evaluate their performance. As application layer pro-

tocols, Post-query protocols cannot work well without the support of the network

layer routing protocols. How those strategies perform when they are combined

with some typical ad hoc routing protocols is an interesting open question.

1.2 Contribution

This thesis focuses on Post-query strategies and their design, implementation

and evaluation when combined with the DSR protocol and DSDV protocol. The

contributions of this thesis are summarized as follows:

• The proposal of the conservative Post-query strategy;

• The design and implementation of five types of Post-query strategies, in-

cluding the greedy, conservative, incremental, uniform memoryless and with

memory strategies, combined with the DSR protocol and DSDV protocol;

1.3. OUTLINE 8

• The design of a simulation model that covers constructing network topolo-

gies, selecting the parameters used in the simulation and designing simula-

tion scenarios for different situations;

• A performance evaluation of these five strategies combined with the DSR

protocol and DSDV protocol.

1.3 Outline

The remainder of this thesis is structured in the following manner:

• Chapter 2 reviews the Post-query protocols in detail, and introduces recent

related work on combining service discovery with ad hoc routing protocols.

• Chapter 3 describes in detail the design of the Post-query strategies, in-

cluding architecture design, major activities and the adopted algorithms.

• Chapter 4 gives an overview of the simulation environment and describes

the simulation scenarios. It also covers how the parameters which will affect

performance are chosen. In addition, it shows the implementation of these

five Post-query strategies in the simulation tool.

• Chapter 5 presents performance metrics and simulation results, followed

by a quantitative performance evaluation of the five Post-query strategies

combined with the DSR protocol and DSDV protocol. Then it summarizes

1.3. OUTLINE 9

each strategy’s performance. In addition, it explains the design choices that

account for these performances.

• Chapter 6 puts forward conclusions on the thesis. Furthermore, some sug-

gestions for the direction of the future work are advanced.

Chapter 2

Review of Literature

In this chapter, we briefly introduce two variations of ad hoc routing protocols,

focusing on the DSDV protocol and DSR protocol. The original Post-query

model is then described in detail. Subsequently, a new approach, combining

service discovery with suitable ad hoc routing protocols is presented. Finally, we

study some related work.

2.1 Ad hoc routing protocols

Numerous routing protocols have been developed for ad hoc networks over the

last few decades. Generally, these protocols can be categorized as either table-

driven or source initiated on-demand. Table-driven protocols attempt to maintain

consistent, up-to-date routing information from each node to all the other nodes in

the network. Each node of the network requires the maintenance of one or more

10

2.1. AD HOC ROUTING PROTOCOLS 11

tables to store routing information. All the nodes propagate routing updates

throughout the network periodically in order to keep a consistent network view

respondent to changes in the network topology. In source initiated on-demand

routing, all up-to-date routes are not maintained at every node; instead, the

routes are created when required. A node invokes a route discovery process

within the network when it requires a route to a destination node. Once a route

has been established, it is maintained through a route maintenance process. The

route remains valid until the destination is unreachable or until the route is no

longer needed. In the following section, we introduce one well-known table-driven

protocol and one source initiated on-demand protocol.

2.1.1 Destination Sequenced Distance Vector Routing Pro-

tocol

Destination Sequenced Distance Vector Routing (DSDV) [Per94] is derived from

the Distributed Bellman-Ford algorithm [Jub87]. In the DSDV protocol, each

node maintains a routing table that stores the next-hop and number of hops for

all reachable destinations. To avoid routing loops, each route table entry is tagged

with a sequence number. The sequence number enables the nodes to distinguish

stale routes from new ones. To maintain consistency in the routing tables, each

node periodically broadcasts routing updates. When a node receives a new route

update packet, it compares the packet to the information already available. Route

2.1. AD HOC ROUTING PROTOCOLS 12

updates are selected based on the following rules. Routes with larger sequence

number are always preferred. If two update packets have identical sequence

numbers, the DSDV protocol chooses the shortest path based on the hop count

to the destination. There are two possible types of route update packets. The

first is called a full dump and the second is known as an incremental packet. The

former type of packet carries all available routing information from the sender’s

routing table, while the latter type of packet is used to relay information which

has changed since the last full dump, reducing the generated traffic.

The DSDV protocol is dependent on periodic broadcasts; it needs some time

to converge before a route can be used. In an ad hoc network, the topology is

expected to be very dynamic, resulting in a slow convergence of routes as packets

are dropped and nodes move around. Periodic and triggered broadcasts also add

a significant overhead to the network, especially those exhibiting high mobility.

When the number of nodes in the network grows, the size of the routing tables and

the bandwidth required to update them also grows, which could result in excessive

communication overhead. This overhead is nearly constant with respect to the

mobility rate. The simulation results in [Bro98] show that, the DSDV protocol

delivers virtually all data packets when the node mobility rate and speed are low,

and it has a lower packet delivery ratio as node mobility increases.

2.1. AD HOC ROUTING PROTOCOLS 13

2.1.2 Dynamic Source Routing Protocol

Dynamic Source Routing (DSR) [Joh96] is a source initiated on-demand routing

protocol. Source routing means that the sender of the packet determines the

complete ordered list of the nodes through which the packet should be forwarded.

In contrast to the DSDV protocol, the DSR protocol uses no periodic routing

messages, thus greatly reducing network overhead and avoiding a large number

of routing updates. Instead, the DSR protocol requires that each node in the

network maintains a route cache which saves the found active routes.

The main procedures in the DSR protocol are route discovery and route main-

tenance. When a source node wants to send a packet to a destination node in the

network, it first looks up its route cache to determine if a route to the destina-

tion has already been stored. If an unexpired route to the destination exists, the

source node then adopts this route to send the packet. However, if such a route

is not found in its route cache, the source node then invokes a route discovery

procedure. It broadcasts a route request packet which contains the address of the

source and destination nodes and a unique identification number. Each interme-

diate node checks if a route to the destination exists in its route cache. If such a

route is not found, the intermediate node appends its address to the route record

of the packet and forwards the packet to its neighbors. A route reply packet is

generated when either the destination node or an intermediate node which has an

unexpired route to the destination node receives the route request packet. When

2.1. AD HOC ROUTING PROTOCOLS 14

the destination node generates the route reply, it copies the route information

from the route request packet into the route reply packet. When an intermediate

node sends the route reply, it appends the found route to the route information

of the request packet and puts it into the route reply packet. In order to send the

route reply packet, the responding node must have a route to the source node. If

symmetric links are supported, the reverse of the route information can be used

to send this route reply packet. In situations where symmetric links are not sup-

ported, the destination node or the intermediate node can initiate route discovery

to the source node and piggyback the route reply onto this new route request.

The DSR protocol uses route error packets and acknowledgements for the route

maintenance procedure. Each node residing along the route is responsible for

detecting whether the link to its next hop is broken when it wants to transmit a

packet to the next hop. The link breakage is detected using a wireless MAC layer

retransmission and acknowledgement mechanism or passive acknowledgements as

described in [Mal99]. When a broken link is detected, the node returns a route

error packet to the source node of the packet. When a route error packet is

received, the broken link and the links after it are then removed from any route

cache which contains this hop. The source node can use any other route to the

destination node if there is such an unexpired route in its route cache. Other-

wise, it can initiate a route discovery procedure to find a new route. In the DSR

protocol, the network overhead grows if the packet has to go through more hops

2.2. EXISTING APPROACHES 15

to reach the destination node. It does not use periodic routing advertisements,

thereby saving bandwidth and reducing power consumption. On the other hand,

as the network becomes larger, control packets and data packets also become

larger, because they need to carry addresses for every node in the path. More-

over, aggressive uses of the route cache will cause delays and affect throughput

performance.

2.2 Existing approaches

In Section 2.1, the representative ad hoc routing protocols are introduced. These

protocols provide the routing support for the service discovery protocols. It

is challenging to design and implement service discovery protocols in ad hoc

networks because of their characteristics. Several attempts have been made to

enable service discovery in ad hoc networks. In the following sections, we focus

on reviewing two of the existing approaches.

2.2.1 The Post-query strategies

Barbeau and Kranakis [Bar03] define several Post-query strategies that can be

used to locate a service in an ad hoc network, including the: greedy, incremental,

uniform memoryless and with memory strategies. Service discovery protocols are

abstracted as Post-query protocols. The Post-query strategies are time dependent

2.2. EXISTING APPROACHES 16

Post-query protocols that are executed in rounds. Their proposals are based on

the assumption that routes to services are discovered before or at the same time as

services. They aim at maximizing the probability that in the Post-query strategy,

a given client succeeds in locating a service and minimizing the waiting time and

total number of postings and queryings.

A Post-query protocol is defined as a pair of functions (P, Q), where P (s) is the

posting protocol and Q(c) is the querying protocol. Let 1, 2, . . . , k be the k types

of services offered in the network and let K = {1, 2, . . . , k}. Each server s posts a

service of type ks to a set of nodes Ns according to the algorithm defined in P (s).

Similarly, each client c queries a service type kc from a set of nodes Nc based on

the algorithm defined in Q(c). A client successfully locates a service if this service

has been posted by some server to a node that it queries. In the context of ad

hoc networks, the topology changes as time passes, so a node may be unreachable

during the execution of a Post-query protocol. Hence, a Post-query protocol is

not by itself sufficient to efficiently adapt to the dynamic changes of the network

topology. To solve this problem, Post-query strategies are proposed. They are

executed in a sequence of rounds; at each round r a pair of Post-query protocols

(P (s), Q(c)) are employed. The maximum round R is the upper bound of the

number of rounds, after which the nodes terminate their strategies. A Post-query

strategy is defined as a sequence (P1(s), Q1(c)), (P2(s), Q2(c)), . . . , (PR(s), QR(c))

of Post-query protocols. To model the influence of dynamic topology changes, a

2.2. EXISTING APPROACHES 17

connection probability p is introduced with 0 ≤ p ≤ 1 to indicate the probability

of a communication path existing between each pair of nodes in the network.

The greedy, incremental, uniform memoryless and with memory strategies are

defined. They use a common algorithm. For each round r, a server s first posts

its services according to the posting protocol Pr(s), and a client then queries

services based on the querying protocol Qr(c). In each round, all nodes follow

the posting-querying order. The algorithm is executed until the maximum round

index R is reached or the queried services are successfully located, whichever

comes first. The proposals of each Post-query strategy are as follows:

1. The greedy Post-query strategy: In this strategy, all nodes post to all nodes

and all nodes query all nodes in the network using the network broadcast

mechanism. This strategy is non-adaptive because the execution in each

round remains the same. There are two alternatives in the greedy strategy.

One is called post-greedy, in which the servers post to all nodes and the

clients query only one node in the network. The other is called query-

greedy, in which the servers post to one node and the clients query all the

nodes in the network.

2. The incremental Post-query strategy: In order to conserve valuable re-

sources, servers and clients post to and query from a small set of nodes in

the first round and increase the sizes of the posting and querying sets gradu-

ally. Two variants of this strategy, post-incremental and query-incremental

2.2. EXISTING APPROACHES 18

are defined. In the former, only the size of the posting set is increased while

in the latter case, only the size of the querying set is incremented.

3. The uniform memoryless Post-query strategy: This strategy is called uni-

form because the same Post-query protocol is executed in each round, and

the posting and querying protocols are identical for all the nodes of the net-

work. Servers post all the services they can offer to a random set of nodes.

Clients query a random set of nodes. The chosen sizes of the posting and

querying sets affect the waiting time, network overload and the probability

that a given client c ∈ N succeeds in finding a service.

4. The with memory Post-query strategy: In this strategy, each client builds a

cache to store the addresses of the nodes posted to or queried from in pre-

vious rounds. Each new round only involves posting (querying) previously

uncontacted nodes.

The simulation results show that, the probability of success within a low num-

ber of rounds increases as the connection probability p increases. The probability

of success within a low number of rounds increases with the number of nodes since

the number of service offers increases as well. The greedy strategy maximizes the

probability of succeeding while requiring the greatest network resources. The

waiting time for the greedy strategy is the shortest of all the strategies. The in-

cremental strategy involves the longest waiting time, while it consumes the least

2.2. EXISTING APPROACHES 19

network resources. The waiting time and cost of the uniform memoryless strategy

lie between that of the greedy and incremental strategies. When the connection

probability p is greater than 0.5, the probability of succeeding is higher than

with the greedy strategy. Simulation also shows that in dense ad hoc networks,

Post-query strategies are more useful.

2.2.2 Service discovery in on-demand ad hoc networks

Koodli and Perkins [Koo02] define another work in progress approach for service

discovery in ad hoc networks. They add extensions to suitable ad hoc routing

protocols in order to provide support for service discovery along with routes to

those services. In their approach, the association between a service and the IP

address of the node hosting the service is known as service binding.

For table-driven routing protocols, a Service Reply extension is added to a

topology updating packet. By this means, service information as well as the

information about which links are available for creating routes, can be made

available immediately. The service discovery operation is combined with the

operation of processing new topology update packets.

For source initiated on-demand routing protocols, the basic service discovery

process adopts the same operations and message format as the route discovery

process, while it adds a service request extension to the route request packet.

There are two types of service request extensions: the Serivce Port Request and

2.3. RELATED WORK 20

Service URL Request extensions. When a node wants to locate a service, it

initiates a service request by including an extension in the route request and

then floods this route request. A node that receives a route request with a

service request extension processes this service request according to Figure 2.1.

A node that receives a route request with a service request extension (such

a message is called an SREQ) first checks whether it has a valid service binding

with a valid lifetime. If it has no such service binding, it should rebroadcast

the original SREQ packet. Next, it verifies whether there is a valid route to the

resolved IP address of the service binding. If the node has the service binding

as well as a valid route, it constructs a service reply extension to a route reply

(such a message is called an SREP). Then, it sends the SREP packet back to

the source node. If the node only has a valid service binding but no valid route

to the resolved IP address, it sets the Destination IP address to the resolved IP

address, and rebroadcasts the modified SREQ packet.

2.3 Related Work

In the previous section, we described two approaches for service discovery in ad

hoc networks. Besides these two approaches, we review related work on the design

and implementation of service discovery protocols in such networks.

2.3. RELATED WORK 21

Receive a route request

with a service request

extension (SREQ) packet

check if it has valid

service binding

check if it has

a valid route

Yes

Yes

construct a service reply extension

into the route reply (SREP) packet

send back the SREP packet

to the source node

No

No

rebroadcast the original

SREQ packet

set the Destination IP address

to the resolved IP address

rebroadcast the SREQ packet

Figure 2.1: Activity diagram of receiving an SREQ packet of an intermediate
node

2.3. RELATED WORK 22

2.3.1 Service discovery in single-hop ad hoc networks

IBM has developed DEAPspace [Nid01] [Her01] that addresses the service dis-

covery problem in wireless ad hoc single-hop networks. Its primary goal is faster

convergence of service information available in the network. Considering that

in an ad hoc network, the maintenance of the centralized node which stores all

the service information of the network is difficult and complicated, DEAPspace

selects a distributed approach: the push model (in which servers send unsolicited

service advertisements).

Each node in DEAPspace maintains a cache to store all the services offered

in the network. Nodes participate in the advertising of services through a broad-

cast mechanism. Periodic broadcasts are scheduled in a proactive way using an

adaptive backoff mechanism. If a node which receives the service advertisement

finds that the services that it offers are absent or about to time out, it increases

its chances of broadcasting more frequently. Each node adds new service adver-

tisements into its internal cache, if in these advertisements, the services offered

in the network have longer lifetime values than the ones in its internal cache.

A performance evaluation of DEAPspace shows that the bandwidth required

for the DEAPspace algorithm is about the same as other push model solutions.

However, the time for the discovery of available services is better with DEAPspace

than with other push model solutions which also use a broadcast mechanism, since

more service information is being propagated when one node broadcasts its entire

2.3. RELATED WORK 23

cache than when each node of the network only broadcasts the service information

which it offers. However, we noticed that unnecessarily repeated broadcasts occur

in DEAPspace, consuming network bandwidth. Moreover, maintaining such a

tight convergence in a highly dynamic ad hoc network may not be worth the

effort.

2.3.2 Konark - A service discovery delivery protocol for ad

hoc networks

Konark [Hel03] is a middleware designed specifically for the discovery and delivery

of services in multihop ad hoc networks. It comprises two major operations -

service discovery and service delivery. We focus on reviewing the service discovery

aspect. Konark supports the push model and pull model. In the former, the

servers send unsolicited service advertisements, while in the latter model the

clients send out service requests. The Konark project assumes the multicast

support of underlying ad hoc routing protocols.

Each node adopts a Konark SDP Manager which is responsible for the dis-

covery of the required services and the registration and advertisement of its local

services. All the nodes join a locally-scoped multicast group. The SDP Manager

of each node maintains a cache called a service registry to store the node’s local

services, as well as service information that it has discovered or received via ser-

vice advertisements. The service registry has a tree-based data structure which

2.3. RELATED WORK 24

classifies the service information. This structure facilitates the service query and

advertisement processes. To discover services in the network, servers employ a

mechanism called passive push and clients use an active pull mechanism. First, a

client initiates a service discovery message and sends out a discovery message on

a fixed multicast group. After receiving such a service discovery message, each

server checks the corresponding service in its service registry. If such a service

is found, the server constructs a service advertisement message and replies back

to the client. The service advertisement process is similar to the service discov-

ery process. Upon receiving a service advertisement message, the clients store it

according to the structure of their service registries.

The Konark project has recently paid more attention to an efficient service

discovery protocol to exploit the nature of highly dynamic ad hoc networks.

Based on its original design, it has developed a new algorithm which attempts

to balance the convergence time and network bandwidth use. Compared with

the DEAPspace algorithm we reviewed in Section 2.3.1., when a node receives a

service message, it only multicasts the difference between its own relevant services

and the service information in the received service message. Hence, network

overload is reduced. The new algorithm also avoids the storm of concurrent

multicasts by randomly assigning the multicast time interval. Moreover, if the

node which receives the service message verifies that its service registry has the

same service information as that in the received service message, it then remains

2.3. RELATED WORK 25

silent and no multicast occurs.

The performance evaluation of this project is a work in process. From the

algorithm, we can conclude that this approach still uses a considerable amount

of multicast messages to achieve faster convergence.

2.3.3 Service discovery protocol based on On-Demand Mul-

ticast Routing Protocol

A lightweight service advertisement and discovery protocol for ad hoc networks,

based on the On-Demand Multicast Routing Protocol (ODMRP) [Lee99], is pro-

posed by Liang Cheng [Che02]. The service advertisement and discovery infor-

mation is piggybacked onto ODMRP routing packets in this protocol. It supports

both the pull model and push model described in Section 2.3.2.

In the push model, each server first constructs a service advertisement mes-

sage. It then combines this message with the join query packet header by ap-

pending the advertisement message as an extension. Next, the server multicasts

the revised ODMRP join query packet. When a client receives the service ad-

vertisement, it first saves the service information into its cache. Then it sends

back a service awareness reply, which is an ODMRP join reply packet without

any extension. Once a server receives service awareness replies sent back from

some clients, the server sends its updated service advertisement messages using

an ODMRP packet with the server advertisement extension. In the pull model,

2.3. RELATED WORK 26

if a client wants to locate a service, it first sends a query to a well-known multi-

cast address. The service query message is similar to the service advertisement

message, and is also combined with an ODMRP join query packet. Once a node

receives a service query message sent by a client, it first waits for a random period

of time to determine whether it has already had a corresponding service aware-

ness reply message. If it is found, the node keeps silent. Otherwise, it checks

its cached service information. If the queried service can be obtained locally, the

node constructs a service awareness reply message and sends it back to the client.

The design and implementation of this protocol benefit from the design of

the ODMRP protocol. This protocol only sends update advertisements to avoid

periodically sending multicast messages, thus, reducing the network overhead.

Chapter 3

Detailed Design of the Post-query

Strategies

In Chapter 2, we reviewed several approaches to service discovery in ad hoc

networks. We also detailed the greedy, incremental, uniform memoryless and

with memory Post-query strategies. In this chapter, in addition to presenting our

detailed design of these proposed Post-query strategies, we define another Post-

query strategy called the conservative strategy, based on the greedy strategy, and

describe its design in detail. This chapter first describes the design architecture of

our protocol stack, and then offers a detailed design for each Post-query strategy.

The flow of messages in the main processes are shown using message sequence

diagrams according to the Message Sequence Chart 96 standard (see Appendix

A) [Msc99].

27

3.1. ARCHITECTURE DESIGN 28

3.1 Architecture design

Post protocol
 Query protocol

DSR / DSDV protocol
 DSR / DSDV protocol

Data

Server
 Client

Figure 3.1: Architecture of protocol stack

The architecture design is illustrated in Figure 3.1. Each node in an ad hoc

network is either a server or a client. For each server, a Post protocol is employed

and for each client a Query protocol is employed. We choose the DSR protocol

and DSDV protocol as the underlying ad hoc routing protocols.

3.2 The message format of the Post-query proto-

col

Figure 3.2 illustrates the message format of the Post-query protocol. Here we have

three types of messages transmitted over the network: ServicePost, ServiceQuery

and ServiceReply messages. The lifetime field indicates how long the message

will be active. A list of the services in the message format covers the situation in

3.3. COMMON DESIGN FEATURES OF THESE FIVE POST-QUERY

STRATEGIES 29

0
 1

Message-ID

3
2

Message-

Type

Lifetime
 Reserved

0
 1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Length of <service-type>
 Service-type

Figure 3.2: The Post-query protocol message format

which a server may offer several different kinds of services, a client may request

various kinds of services and a client may receive several diverse services from

one or more servers.

3.3 Common design features of these five Post-

query strategies

Before we go deep into the detailed design of each strategy, we synthesize the

common design features of these five strategies:

1. Our main concern is how to locate services in ad hoc networks. We focus

on the design of efficiently locating services.

2. We require from each node of the network the maintenance of a cache to

store the service information from previous rounds. Thus, after each round,

the nodes which receive other servers’ postings become potential servers for

the following rounds. This means that, in the following rounds when these

3.4. THE GREEDY POST-QUERY STRATEGY 30

nodes are queried for the services which they cached from previous rounds,

they are capable of sending back replies.

3. Although the servers and clients have a peer-to-peer relationship, from an

application layer protocol view they have different functions. A server may

send ServicePost messages to other nodes, or ServiceReply messages to

other clients. It can also receive ServiceQuery messages from other clients

and ServicePost messages from other servers. A client may send Service-

Query messages to other nodes, or ServiceReply messages to other clients.

It can also receive ServicePost messages from other servers, ServiceQuery

messages from other clients and ServiceReply messages from other clients.

4. When a node receives a query from a client about a service, it sends all the

matched service information back to this client. Hence, if this client wants

to use this service information later, it has more choices. If this node does

not have the desired service, it keeps silent and does nothing.

3.4 The greedy Post-query strategy

The underlying link layer protocol treat the application data as only a one-hop

broadcast if the destination IP address is set to IP_BROADCAST (-1). The

role of the DSR protocol and DSDV protocol is to deliver service reply messages

to the senders. The greedy strategy requires that all servers post their services

3.4. THE GREEDY POST-QUERY STRATEGY 31

to all the nodes, and that all clients query their services from all the nodes in

the network in each round. To achieve this goal, a flooding algorithm is used.

The idea of a flooding algorithm is that each node tries to forward every message

to every one of its neighbors. This results in every message eventually being

delivered to all reachable parts of the network. However, some precautions have

to be taken to avoid duplicate deliveries and infinite loops. Each node should

maintain a cache in which to save the identifiers of received messages. The nodes

can discard those messages which they have already seen. For example, when

a node receives a ServicePost or a ServiceQuery message, it checks the message

identifier in its cache. If the message identifier is new, the node saves the message

identifier in its cache and resends the message.

For each server s of the network, a Post protocol is adopted. A Post protocol

maintains two caches. One is called the message cache, and it saves the message

identifiers. The other is called the service cache, and it stores the service infor-

mation. Before sending a ServicePost message, the type of service offered by this

server is added into its service cache. For each client c of the network, a Query

protocol is adopted. In addition to the attributes of the Post protocol, a Query

protocol also has a sent time attribute which memorizes the time the message

was sent. This attribute is used for calculating the time a client waits to receive

a ServiceReply message.

Figure 3.3 demonstrates the message flows between a server and a client.

3.4. THE GREEDY POST-QUERY STRATEGY 32

Post protocol
 Query protoco
l

2: broadcast ServicePost

node-ID, message-ID, service-type

3: check message-ID in message cache

alt

4: check node-ID and service-type in service cache

7: rebroadcast ServicePost

5: save node-ID and service-type into service cache

node-ID, message-ID, service-type

1: save message-ID into message cache

t
1

t
2

8: check message-ID in message cache

message-ID has already been saved in

message cache, do nothing

message-ID has already been saved

in message cache, do nothing

alt
 already been saved,

do nothing

6: save message-ID into message cache

Figure 3.3: Sequence diagram of the greedy strategy: server broadcasts Service-
Post message

3.4. THE GREEDY POST-QUERY STRATEGY 33

A Post protocol and a Query protocol are employed in the server and client

respectively. In each round, before sending out a ServicePost message, the server

stores the message ID into its message cache. At time t1, the server broadcasts a

ServicePost message containing its node ID, message ID and the service type it

is offering. When a client which resides within the communication range receives

this ServicePost message, it first checks for the message ID in its message cache.

If the message ID is found, indicating that the client has already received that

same message from the same server, it then does nothing. If the message ID

is new, the client first checks the service type and the server’s node ID in its

service cache. If the client has already saved the same service information before,

implying that the client has received the same ServicePost message in a previous

round, it ignores this service information. It then saves the message ID into its

message cache and rebroadcasts the same ServicePost message. If the node ID

and service type are new to the client, it saves them into its service cache, stores

the message ID into its message cache and rebroadcasts the same ServicePost

message. At time t2, the server receives the rebroadcast ServicePost message

which it had originated by itself. It checks its message cache and finds that the

message ID has already been saved before. Then, the server keeps silent. By

this means, infinite loops are avoided. As discussed in Section 3.3, the same

message flows could occur between two servers. A server could also receive other

servers’ ServicePost messages and save the service information into its service

3.4. THE GREEDY POST-QUERY STRATEGY 34

cache. However, this server can only post the services which it can offer to the

other nodes, while it can be queried for other cached services.

Figure 3.4 illustrates the message flows between a client and a server. A Query

protocol and a Post protocol are employed in the client and server respectively.

In each round, before sending out a ServiceQuery message, the client stores the

message ID into its message cache. At time t1, the client broadcasts a Service-

Query message, which consists of its node ID, message ID and the service type

which it is querying. When a server which resides within the communication

range receives this ServiceQuery message, it first checks the ID of this message

in its message cache. If it is found, implying that the server has already received

that same message from the same client, it then does nothing. If the message ID

is new, the server first checks the service type queried by the client in its service

cache. If the server does not have the queried service type, it then saves the

message ID into its message cache and rebroadcasts this ServiceQuery message.

If the required service is found, the server first unicasts a ServiceReply message

to the client, and then stores the message ID into its message cache and rebroad-

casts this ServiceQuery message. The waiting time of the client is t2 minus sent

time t1 if the client receives a ServiceReply message, or the interval of the round

if the client receives no ServiceReply message during this round. At time t3, the

client receives the rebroadcast ServiceQuery message which it had originated by

itself. It checks its message cache and finds that the message ID has already been

3.4. THE GREEDY POST-QUERY STRATEGY 35

Query protocol
 Post protocol

2: broadcast ServiceQuery

node-ID, message-ID, service-type

3: check message-ID in message cache

alt

4: check service-type in service cache

5: unicast ServiceReply

7: save message-ID into message cache

node-ID, message-ID, service-type

1: save message-ID into message cache

t
1

t
2

6: save node-ID, service-type into service cache

alt

9: check message-ID in message cache

8: rebroadcast ServiceQuery

node-ID, message-ID, service-type

message-ID has already been saved

 in message cache, do nothing

no such service found, do nothing

message-ID has already been saved

 in message cache, do nothing

t
3

Figure 3.4: Sequence diagram of the greedy strategy: client broadcasts Service-
Query message

3.5. THE CONSERVATIVE POST-QUERY STRATEGY 36

saved before. Then the client keeps silent. As interpreted in Section 3.3, the

same message flows could occur between two clients. A client could also receive

other clients’ ServiceQuery messages. They may have cached the required service

information. Furthermore, a client could also send a ServiceReply message to

another client.

3.5 The conservative Post-query strategy

Based on the greedy strategy, we define another strategy called the conservative

Post-query strategy. This conservative strategy requires that in each round, all

the servers (clients) post to (query from) their one-hop neighbors in the network.

As was mentioned in Section 3.4, this strategy can directly use the one-hop broad-

cast mechanism provided by the underlying link layer protocol. It uses the DSR

protocol and DSDV protocol to deliver service reply messages to the senders.

Unlike the greedy strategy, in the conservative strategy a Post protocol does not

need a message cache to store all the IDs of the received messages, since the con-

servative strategy requires each node to do one-hop broadcast and no rebroadcast.

A Post protocol employed in a server using the conservative strategy has a service

cache attribute and a Query protocol employed in a client of this strategy has a

service cache and a sent time attribute.

Figure 3.5 shows the message flows between a server and a client. The server

and the client adopt a Post protocol and a Query protocol respectively. At time t1,

3.5. THE CONSERVATIVE POST-QUERY STRATEGY 37

Post protocol
 Query protocol

1: broadcast ServicePost

node-ID, service-type

alt

2: check node-ID and service-type in service cache

3: save node-ID and service-type into service cache

t
1

node-ID and service-type have already

been saved in service cache, do nothing

Figure 3.5: Sequence diagram of the conservative strategy: server broadcasts
ServicePost message

3.5. THE CONSERVATIVE POST-QUERY STRATEGY 38

the server and the client are within communication range. The server broadcasts

a ServicePost message containing its node ID and offered service type. When the

client receives this ServicePost message, it first checks the node ID and service

type in its service cache. If the same service information has been saved before,

then the client does nothing. Otherwise, it stores the node ID and service type

into its service cache. The same message flows could occur between two servers,

as described in Section 3.4.

Query protocol
 Post protocol

1: broadcast ServiceQuery

node ID, service-type

alt

2: check node ID and service-type in service cache

t
1

3: unicast ServiceReply

node-ID, service-type

t
2

4: save node-ID, service-type into service cache

no such service found, do nothing

Figure 3.6: Sequence diagram of the conservative strategy: client broadcasts
ServiceQuery message

Figure 3.6 illustrates the message flows between a client and a server. A

3.6. THE INCREMENTAL AND UNIFORM MEMORYLESS POST-QUERY

STRATEGIES 39

Query protocol and a Post protocol are employed in the client and the server

respectively. At time t1, the client and the server are within communication

range. The client broadcasts a ServiceQuery message which consists of its node

ID and the service type which it is querying. When the server receives this

ServiceQuery message, it first checks in its service cache to see if it has the same

service information. If it cannot find the queried service, then it remains quiet.

If the service which the client queries is found in its service cache, at time t2 the

server unicasts a ServiceReply message to the client. At that time, they may

still be within communication range or may have moved multiple hops away from

each other. The waiting time of the client t is equal to t2 minus t1 if the client

receives a ServiceReply message, or the interval of the round if the client receives

nothing. The same message flows could occur between two clients, as noted in

Section 3.4.

3.6 The incremental and uniform memoryless Post-

query strategies

We put these two strategies together because they have the same message flows

and both use the network unicast communication; however, the size of posting and

querying sets are different. In the incremental strategy, all the servers (clients)

in the network begin posting to (querying from) a small set of randomly chosen

3.6. THE INCREMENTAL AND UNIFORM MEMORYLESS POST-QUERY

STRATEGIES 40

nodes in the first round. As the number of rounds increases, the size of this set

gradually increases too. In the uniform memoryless strategy, all the servers in the

network post their services to l nodes, and all the clients query l′ nodes, where

l and l′ are less than or equal to the total number of nodes in the network and

are positive integers. This consists of rounds of uniform repetitions of the (l, l′)

post-query protocol. A Post protocol and a Query protocol in these two strategies

have the same attributes as those in the conservative strategy. In Figures 3.7 and

3.8, we omit the part common with Figures 3.5 and 3.6.

Post protocol
 Query protocol

2: unicast ServicePost

node-ID, service-type

3: check node-ID and service-type in service cache

t
1

alt

For this part

see Figure 3.5

......

1: randomly choose a destination node ID

Figure 3.7: Sequence diagram of the incremental and uniform memoryless strate-
gies: server unicasts ServicePost message

Figure 3.7 reviews the message flows between a server and a client. A Post

protocol is adopted in the server and a Query protocol is employed in the client.

3.6. THE INCREMENTAL AND UNIFORM MEMORYLESS POST-QUERY

STRATEGIES 41

The server randomly chooses a client ID as its destination. At time t1 the server

and the client could be either within communication range or multiple hops away

from each other. When the client receives the ServicePost message sent by the

server, it checks for the service information in its service cache. If the service

information is found, the client then does nothing. If not, the client stores this

service information in its service cache. The rest of the figure is identical to

Figure 3.5. The same message flows could occur between two servers as were

described in Section 3.4.

Query protocol
 Post protocol

2: unicast ServiceQuery

node-ID, service-type

3: check node-ID and service-type in service cache

t
1

alt

For this part

see Figure 3.6

......

1: randomly choose a destination node ID

Figure 3.8: Sequence diagram of the incremental and uniform memoryless strate-
gies: client unicasts ServiceQuery message

Figure 3.8 demonstrates the message flows between a client and a server. A

3.7. THE WITH MEMORY POST-QUERY STRATEGY 42

Query protocol is carried by the client and a Post protocol is adopted by the

sever. The client randomly chooses a server ID as its destination. At time t1

the client and the server could be either within communication range or multiple

hops away from each other. When the server receives the ServiceQuery message

sent by the client, it checks for the service information in its service cache. The

rest of this figure is identical to Figure 3.6. The same message flows could occur

between two clients as discussed in Section 3.4.

3.7 The with memory Post-query strategy

For a service discovery strategy, our main concern is that a greater number of

nodes find their services. Obviously the aforementioned two strategies, the in-

cremental and uniform memoryless strategies, are not sufficient to resolve this

concern, if posting and querying sets are relatively small. To solve this problem,

we can introduce another cache to each node to store the IDs of the nodes which

have not been visited before. In this strategy, in each round all the servers in the

network post their services to l nodes, and all the clients query l′ nodes, where l

and l′ are positive integers and are less than or equal to the total number of nodes

in the network. Unicast communication is used. Each round only involves the

nodes which have not been visited before. Compared with the uniform memory-

less Post-query strategy, Post and Query protocols in the with memory strategy

have one more cache. In Figures 3.9 and 3.10, we also omit those sections in

3.7. THE WITH MEMORY POST-QUERY STRATEGY 43

common with Figures 3.5 and 3.6.

Post protocol
 Query protocol

2: unicast ServicePost

 node-ID, service-type

4: check node-ID and service-type in service cache

t
1

alt

For this part

see Figure 3.5

......

3: remove the destination

node-ID from its cache

1: randomly choose a destination

node ID from its cache

Figure 3.9: Sequence diagram of the with memory strategy: server unicasts Ser-
vicePost message

Figure 3.9 depicts the message flows between a server and a client. A Post

protocol is adopted in the server and a Query protocol is employed in the client.

The server randomly chooses a client ID as its destination from its untouched

cache. At time t1 the server and the client could be either within communica-

tion range or multiple hops away from each other. After the server unicasts a

ServicePost message to the chosen client, the server removes the client ID from

its cache so that the next time the server randomly chooses a destination node

3.7. THE WITH MEMORY POST-QUERY STRATEGY 44

ID, only those nodes which have not been contacted with will be involved. When

the client receives the ServicePost message sent by the server, it checks for the

service information in its service cache. If the service information is found, the

client then does nothing. If not, the client stores this service information in its

service cache. The rest of the figure is identical to Figure 3.5. The same message

flows could occur between two servers as described in Section 3.4.

Query protocol
 Post protocol

2: unicast ServiceQuery

 node-ID, service-type

3: check node-ID and service-type in service cache

t
1

alt

For this part see

Figure 3.6

......

3: remove the destination

node ID from its cache

1: randomly choose a destination

node ID from its cache

Figure 3.10: Sequence diagram of the with memory strategy: client unicasts
ServiceQuery message

Figure 3.10 presents the message flows between a client and a server. A Query

protocol is carried by the client and a Post protocol is adopted by the sever. The

client randomly chooses a server ID as its destination from its untouched cache.

3.7. THE WITH MEMORY POST-QUERY STRATEGY 45

At time t1 the client and the server could be either within communication range

or multiple hops away from each other. After the client unicasts a ServiceQuery

message to the chosen server, the client deletes the server ID from its cache.

Thus, when the server wants to randomly choose another destination node, only

those nodes which have not been visited may be chosen. When the server receives

the ServiceQuery message sent by the client, it checks for the service information

in its service cache. The rest of this figure is identical to Figure 3.6. The same

message flows could occur between two clients as discussed in Section 3.4.

Chapter 4

Simulation and Implementation

In this chapter we introduce the simulation environment for these five Post-query

strategies. We use a well known simulation tool called the Network Simulator

(NS). We then present some information on how the scenarios are chosen, followed

by a description of the selection of all the simulation parameters. According to

the designs from the previous chapter, we show the implementation of these five

Post-query strategies in NS.

4.1 Simulation environment

In our research, the functional requirements for a simulation tool to evaluate the

greedy, conservative, incremental, uniform memoryless and with memory Post-

query strategies, combined with the DSR protocol and DSDV protocol are as

follows. First, the simulation tool should support our architecture design as

46

4.1. SIMULATION ENVIRONMENT 47

depicted in Section 3.1. This means an ideal simulation tool should permit the

addition of new application protocols easily. Moreover, underlying ad hoc routing

protocols such as the DSR protocol and DSDV protocol should be available. The

integration of the application protocol and routing protocols should not require

significant effort. Second, our context is ad hoc networking, so the simulation

tool should be capable of generating scenarios which can model different ad hoc

network scenarios. Various simulation scenarios should also be created for the

evaluation of the performance of the five Post-query strategies. Finally, from the

design of these five strategies in Chapter 3, it can be noted that they either use

a network broadcast mechanism or a network unicast mechanism. This requires

that the routing protocols and underlying link layer protocols in the simulation

tool support these two communication mechanisms.

The Network Simulator (NS) is chosen as our simulation tool because it meets

our functional requirements. The current version is NS-2 [Fal97]. It is an object-

oriented, discrete event driven network simulator developed at UC Berkeley, writ-

ten in the C++ and OTcl languages. The Monarch research group at Carnegie-

Mellon University developed support for the simulation of multihop wireless net-

works complete with the physical, data link, and medium access control (MAC)

layer models in NS-2 [Bro98]. NS-2 has an approach which separates the im-

plementation of basic network component objects from the implementation of

the control objects. With respect to the incremental and uniform memoryless

4.2. MOVEMENT SCENARIOS 48

Post-query strategies, they allow for common network component objects and

common data flows. Only the objects which are responsible for controlling post-

ings and queryings are different. Our implementation of these two strategies

benefited from this aspect of NS-2. In NS-2, to achieve the separation of data

and control components while maintaining the communication between them,

C++ objects are available to the OTcl interpreter through an OTcl linkage that

creates a matching OTcl object for each of the C++ objects. The control func-

tions and the configurable variables specified by the C++ object act as member

functions and member variables of the corresponding OTcl object. For C++ ob-

jects that have an OTcl linkage forming a hierarchy, there is a matching OTcl

object hierarchy very similar to that of C++.

In NS-2, the Distributed Coordination Function (DCF) of IEEE 802.11 for

wireless LANs is used as the MAC layer protocol. The wireless interface functions

similar to the Lucent WaveLAN radio interface [Tuc93]. The transmission range

is about 250 meters. The signal propagation model combines both a free space

propagation model and a two-ray ground reflection model.

4.2 Movement scenarios

The main goal of this research is to measure how network topology changes in an

ad hoc network affect the performance of the five Post-query strategies, when they

are combined with the DSR protocol and DSDV protocol. Each ad hoc network

4.2. MOVEMENT SCENARIOS 49

in our simulation consists of 50 wireless nodes, moving over a square (640 m x 640

m) flat space. The random waypoint mobility model [Joh96] is used to generate

different node movement scenarios. There are two parameters in this model:

one is pause_time and the other is the maximum node speed max_speed. The

model works as follows. Each node of the ad hoc network begins the simulation by

remaining fixed for pause_time seconds, and then moves to a randomly chosen

destination within our simulation area at a speed v distributed uniformly between

zero and max_speed. When it reaches the destination, the node stops moving

and remains still for up to pause_time seconds. It then randomly chooses another

destination within our simulation area, and repeats the procedure as previously

described for the duration of the simulation process. We can note that the pause

time and maximum node speed determine the dynamic topology changes of an

ad hoc network. A high pause time and a low maximum node speed result in

a low number of topology changes while an ad hoc network with a low pause

time and a high maximum node speed has a high number of topology changes.

The mobile nodes are initially uniformly distributed around the simulation area,

but as the simulation time elapses, the uniform distribution can not be assumed.

In our simulation, the movement scenario files are generated for three different

pause times: 30, 100 and 300 seconds. We use three different maximum node

speeds for node movement: one meter per second, 10 meters per second and 30

meters per second. We choose three different mobility models for our simulation:

4.2. MOVEMENT SCENARIOS 50

Scenario 300-01 which has a 300 second pause time and one m/s maximum node

speed; Scenario 100-10 which has a 100 second pause time and 10 m/s maximum

node speed; and Scenario 30-30 which has a 30 second pause time and 30 m/s

maximum node speed. To characterize the mobility of the nodes of an ad hoc

network, a parameter called dynamic ratio (DR) is introduced. To calculate it,

we denote the total number of nodes in the network as N and the total number

of link changes of all the nodes during the entire simulation time as LC. The

dynamic ratio is then defined as:

DR = LC/N

Scenario Link changes Route changes Dynamic ratio
300-01 403 905 8.06
100-10 3074 7080 61.48
30-30 9536 21259 190.72

Table 4.1: The link changes, route changes and dynamic ratios of the three
mobility models

The link changes and route changes of these three different mobility models, as

well as the dynamic ratios, are shown in Table 4.1. Hereafter, we use the dynamic

ratio to indicate the degrees of the topology changes of an ad hoc network. The

scenario 30-30 has the highest number of route changes and link changes and the

highest dynamic ratio. The scenario 300-01 has the fewest route changes and

link changes of the three scenarios, and the lowest dynamic ratio. The scenario

100-10 is in-between scenario 30-30 and scenario 300-01.

4.3. PARAMETER SELECTION 51

4.3 Parameter selection

Many parameters are involved in our simulation, some of which are described in

the previous section. Before we describe the implementation of these five Post-

query strategies, certain parameter values need to be selected. We synthesize

these parameters in Table 4.2.

Parameter name Parameter value

Number of nodes 50
Simulation area 640 m × 640 m
Node density 1/8192 m2

Transmission range 250 m
Simulation time 600 s

Maximum node speed 1 m/s, 10 m/s, 30 m/s
Pause time 300 s, 100 s, 30 s

Background traffic null
Number of servers 10
Number of clients 40
Number of services 10
Number of cases 10

Number of runnings 10
Maximum round 10
Round interval 15 s

Posting(querying) interval 15 s
Routing protocols DSR / DSDV protocol

Table 4.2: Simulation and implementation parameters

There are 50 nodes in the network. Ten of them act as servers and 40 of

them perform the role of clients. Ten types of services are provided. We assume

that each server provides one type of service and that all network services follow

a uniform distribution, such that each kind of service is requested with equal

probability. For each Post-query strategy, we have two different ad hoc routing

4.4. IMPLEMENTATION OF THE FIVE POST-QUERY STRATEGIES 52

protocols and three different mobility models. For each mobility model, we gen-

erate ten different scenario cases, each of which is run ten times. Therefore, the

total number of simulations is 5× 2× 3× 10× 10 = 3000. The Post-query strate-

gies belong to the application layer protocols. Hence, background traffic is not

necessary to evaluate the performance of these Post-query strategies. We denote

the round interval and posting (querying) interval as 15 seconds. We assume

that the lifetime of all three types of messages is equal to the duration of a round

times the maximum number of rounds. To achieve a fair comparison, we config-

ure these five Post-query strategies with the same simulation and implementation

parameters.

4.4 Implementation of the five Post-query strate-

gies

In Chapter 3, the designs of the greedy, conservative, incremental, uniform memo-

ryless and with memory Post-query strategies are described in detail. In Section

4.1, we introduced the NS-2 simulation environment. The implementation of

these strategies, combined with the DSR protocol and DSDV protocol in NS-2,

should succeed in separating of the control mechanism from the message pro-

cessing mechanism. In the next sections, we briefly present how we achieve this

separation using the C++ and OTcl languages. Our implementation has a data

4.4. IMPLEMENTATION OF THE FIVE POST-QUERY STRATEGIES 53

processing component in C++ and a control component in OTcl. We show that

how they are combined together in Figure 4.1.

Control side

Data processing side

Send
command
 int command(){...

//parse the command}

int recv(){...

tcl.eval();}
instproc
 recv
{

#print out the results}

OTcl

C++

Figure 4.1: Combination of the components of the data and control sides

4.4.1 The implementation of the Post and Query agents

Packet sending and receiving in NS-2 are handled by a set of protocol agents.

For the Post-query protocol, the Post agent and Query agent are coded in the

C++ language. Instances of the Post (Query) agent run on server (client) nodes.

Considering the functional requirements of these five Post-query strategies, we

developed two sets of Post agents and Query agents. One set of agents is for the

greedy strategy. The Post and Query agents in this strategy have the command(),

4.4. IMPLEMENTATION OF THE FIVE POST-QUERY STRATEGIES 54

recv(), hasService() and hasMessageID() C++ methods. The second set of agents

is for the conservative, incremental, uniform memoryless and with memory Post-

query strategies. The Post and Query agents in these four strategies have the

command(), recv() and hasSerivce() C++ methods.

• The command() method is common to all the agents. It plays the role of an

interface between OTcl and C++. This method is a transmission operation.

For a Post agent, it generates ServicePost messages and broadcasts them.

For a Query agent, it creates SerivceQuery messages and sends them out.

• The hasService() method is a helper operation. The Post agent and Query

agent use this method to determine if a given posted (queried) service type

has been saved in the service cache.

• The hasMessageID() method is another helper operation specifically used

in the greedy strategy for infinite loop avoidance in the flooding algorithm.

It checks the IDs of the received ServicePost or ServiceQuery messages in

the message cache. If the message ID has already been saved, then the Post

and Query agents in the greedy strategy do not rebroadcast the received

messages. The hasMessageID() method is not necessary for the Post and

Query agents of the conservative, incremental, uniform memoryless and with

memory strategies because they do not need to rebroadcast the messages.

• The recv() method is mainly responsible for processing the incoming Post-

4.4. IMPLEMENTATION OF THE FIVE POST-QUERY STRATEGIES 55

query messages. In the greedy strategy, the recv() method in a Post agent

checks the service information obtained from the received ServicePost and

SeviceQuery messages. It unicasts ServiceReply messages to other Query

agents based on the results of the hasService() method. It rebroadcasts

these messages according to the results of the hasMessageID() method.

In addition, for a Query agent, the recv() method also processes received

ServiceReply messages from other Post agents or Query agents. In the

other four Post-query strategies, rebroadcast is not necessary, so the recv()

method in their Post and Query agents only takes charge of dealing with

the received messages and sending out ServiceReply messages. For the sake

of performance evaluation, when a ServiceReply message is received by a

Query agent, the recv() method calculates the waiting time .

The method command() is called after an OTcl send command is executed on

the control side to send a Post-query message between a Post agent and Query

agent. The send command is then parsed by the command() method in C++.

During the execution of the recv() method in C++, an OTcl recv procedure on

the control side is called from the data processing side using tcl.eval(). It prints

out the result if there is a ServiceReply message received.

4.4. IMPLEMENTATION OF THE FIVE POST-QUERY STRATEGIES 56

4.4.2 The implementation of the message control objects

NS-2 splits the C++ and OTcl objects, which allows us to avoid changes at

the C++ level if new functionality is needed at the OTcl level. We developed

the control mechanism for the five Post-query strategies according to the control

functional requirements. The greedy and conservative strategies have the same

control mechanisms because they both use network broadcast communication.

As for the remaining three Post-query strategies, although each strategy uses

a network unicast mechanism, either the sizes of posting and querying sets of

each round or the ways of selecting the posting and querying destinations are

different. The different control functional requirements result in different message

control mechanisms even if they share common C++ components. The control

mechanisms are pictured in Figure 4.2.

First, all the nodes in the network are created. The predefined network sce-

nario file and service type pattern are then loaded. The network scenario files

are generated using the random waypoint algorithm. We define the service type

pattern which indicates the service type each server can offer and the service type

each client wants to locate. A Post agent is attached to each server s and a Query

agent attached to each client c using the attach-agent command. The connect

command builds a communication channel between each server and each client.

We detail four types of sending and receiving mechanisms in the five Post-query

strategies.

4.4. IMPLEMENTATION OF THE FIVE POST-QUERY STRATEGIES 57

attach Post agent for

each server and Query

agent for each client

create all the nodes

in the network

load network scenario

load service type pattern

each server broadcasts

 ServicePost messages

each client broadcasts

 ServiceQuery messages

each server unicasts to

the
selected
 r
node(s)

each client unicasts to

the
selected
 r
node(s)

each server unicasts

 to the
 selected 5 nodes

each client unicasts to

the
selected
5
 nodes

the greedy, conservative

 strategies

the incremental

strategy

the
with memory
 strategy

each server randomly

selects
r
 node(s)

each client randomly

selects
r
 node(s)

check if

r <= R

print out found

service information

r = r + 1
 Yes
 No

build
a cache

for each node

each server randomly selects
5

nodes from its

 cache

each server removes the IDs of
5

visited nodes from the

cache

each server unicasts to

the

selected
5
nodes

each client unicasts to

the
selected
5
nodes

the uniform memoryless

strategy

each server randomly

selects
5
 nodes

each client randomly

selects

5
 nodes
 each client randomly

selects
5
 nodes

each client removes the IDs of
5

visited nodes from
the cache

build communication channel

Figure 4.2: Activity diagram of the control mechanism of the five Post-query
strategies

4.4. IMPLEMENTATION OF THE FIVE POST-QUERY STRATEGIES 58

• The greedy and conservative strategies require that in each round, Service-

Post messages are first broadcast by each server and ServiceQuery messages

are then broadcast by each client. The rebroadcast mechanism designed in

the greedy strategy is implemented in a data processing object because in

NS-2 the dynamic control is not supported in OTcl. The greedy strategy

is implemented as a Post-broadcast-h, query-broadcast-h strategy with h

equal to the network diameter. The conservative strategy is implemented as

a Post-broadcast-h, query-broadcast-h strategy with h equal to one, where

h is the number of broadcast hops.

• The incremental strategy requires that in a round with index r, each server

randomly chooses r node(s) to be unicast the ServicePost messages. Each

client randomly chooses r node(s) to be unicast the ServiceQuery messages.

As the index of rounds r increases, the number of nodes to be selected

increases too. This strategy is implemented as a Post-incremental, query-

incremental strategy.

• The uniform memoryless strategy requires that in a round with index r,

each server randomly chooses and unicasts to five nodes the ServicePost

messages and each client randomly selects and unicasts to five nodes the

ServiceQuery messages. As the index of rounds r increases, the number

of chosen nodes in each round remains the same (five). This strategy is

4.4. IMPLEMENTATION OF THE FIVE POST-QUERY STRATEGIES 59

implemented as a Post-to-l, query-l′ strategy where l and l′ are positive

integers and are equal to five.

• The with memory strategy has the same l and l′ as the uniform memoryless

strategy. A fresh cache for each node in the network is introduced. This

cache stores all the IDs of the nodes in the network. At first, each server

randomly selects five nodes from its cache. After these selected five nodes

are unicast with the ServicePost messages, their IDs are removed from the

cache so that they will not be selected in the next round. Then, each

client randomly chooses five nodes from its cache to unicast ServiceQuery

messages to. After unicast, the IDs are deleted from the cache to make

sure that in the next round only the uncontacted nodes are involved. This

strategy is implemented as a Post-to-l, query-l′ strategy with visited nodes,

a modified Post-to-l, query-l′ strategy.

Finally, the service information from the ServiceReply messages is printed

out, including the ID of the client which sends ServiceQuery message, the service

type which the client queries, the ID of the server which offers the corresponding

service and the waiting time of the client.

Chapter 5

Performance Evaluation

In the previous chapters, we introduced the design, implementation and simula-

tion of the greedy, conservative, incremental, uniform memoryless and with mem-

ory Post-query strategies combined with the DSR routing protocol and DSDV

routing protocol. This chapter investigates the performance of these five strate-

gies. The performance evaluation is carried out through three performance met-

rics: success rate, number of transmitted messages and average waiting time.

Furthermore, a performance comparison of all these five strategies combined with

the DSR protocol and the DSDV protocol is given.

5.1 Performance metrics

To compare the performance of the greedy, conservative, incremental, uniform

memoryless and with memory Post-query strategies combined with the DSR pro-

60

5.1. PERFORMANCE METRICS 61

tocol and DSDV protocol, the following three metrics are used. We denote the

number of total nodes as N , the number of total clients as Nc, and the number of

total successful clients as Nsucc. For each round r, we denote the number of Ser-

vicePost messages as Mpost, the number of ServiceQuery messages as Mquery, and

the number of ServiceReply messages as Mreply. Each successful client c receives

1 to m ServiceReply messages of waiting time t1, t2, . . . , tm.

• Success rate(SR): The ratio (as a percentage) of the number of clients

which successfully locate the services, over the total client number. It is

calculated using the following formula:

SR = Nsucc/Nc × 100 (%)

• Number of transmitted messages(NMT): The number of messages trans-

mitted in each round by all the nodes in the network, including ServicePost,

ServiceQuery and ServiceReply messages. It is calculated using the follow-

ing formula:

NTM =
∑N

n=1

∑
(Mpost, Mquery, Mreply)

• Average waiting time(AWT): The minimum time period in seconds, av-

eraged over all the clients, starting from the sending of a ServiceQuery

message and ending with the receiving of a ServiceReply message. A client

which cannot find the service after r rounds has the waiting time r times

round interval seconds. It is calculated using the following formula:

5.2. RESULTS AND DISCUSSION 62

AWT =
∑Nc

n=1
min(t1,t2,...,tm)

Nc

(s)

For a Post-query strategy, good performance means a high success rate, a

short average waiting time and a low number of transmitted messages.

5.2 Results and discussion

5.2.1 Greedy: Post-broadcast-h, query-broadcast-h strat-

egy with h equal to the network diameter

In this strategy, all the servers post to all the nodes and all the clients query all the

nodes in the network using a network broadcast mechanism based on a flooding

algorithm. Once a node in the network receives a ServicePost or a ServiceQuery

message, it checks the message identifier in its cache. If the message identifier is

new, the node rebroadcasts the message and saves the message identifier in its

cache. The number of rebroadcast hops h is the diameter of the network. This

strategy is greedy because it consumes significant network resources, in terms of

the number of transmitted messages, to achieve a high success rate. It has the

highest number of transmitted messages and the lowest average waiting time of

all the strategies.

From Figures 5.1 and 5.2, we can observe three features of this strategy. First,

this strategy can achieve a very high success rate, up to 100%, when it is combined

5.2. RESULTS AND DISCUSSION 63

Figure 5.1: Post-broadcast-h, query-broadcast-h strategy with h equal to the
network diameter DSR success rate

Figure 5.2: Post-broadcast-h, query-broadcast-h strategy with h equal to the
network diameter DSDV success rate

5.2. RESULTS AND DISCUSSION 64

with the DSR protocol or DSDV protocol. The flooding algorithm used in this

strategy results in a large number of nodes being posted to or queried from within

a low number of rounds.

Second, we find that the higher the dynamic ratio of the network is, the lower

the success rate of this strategy is. This feature can be explained by studying

the characteristics of these two routing protocols. As a table-driven routing

protocol, the DSDV protocol attempts to maintain consistent, up-to-date routing

information from each node to every other node in the network. It requires that

each node maintain one or more tables to store routing information and to respond

to changes in network topology by periodically propagating updates throughout

the network. For an ad hoc network with a constant number of nodes, e.g.

N = 50, the routing overhead in the three dynamic ratios is very similar. A

network with a higher dynamic ratio has slightly more routing overhead than a

network with a lower dynamic ratio. However, the packet delivery ratio drops

greatly as the dynamic ratio of the network becomes higher, as Broch et al.

[Bro98] found in their simulations. So when combined with the DSDV protocol,

the success rate of this strategy decreases when the dynamic ratio of the network

becomes higher. As a source-initiated on-demand ad hoc routing protocol, the

DSR protocol creates routes only when they are needed by source nodes. There

are no periodic routing advertisements in the protocol. Instead, when a node

needs a route to another node, it dynamically determines one based on cached

5.2. RESULTS AND DISCUSSION 65

information, or on the result of a route discovery process. For an ad hoc network

with a constant number of nodes, the packet delivery ratio is very high regardless

of the dynamic ratio of the network. However, the routing overhead of the network

significantly increases when the dynamic ratio of the network becomes higher.

Table 4.1 shows that the higher the dynamic ratio of the network, the higher the

number of route changes and link changes in the network, which causes greater

routing overhead. Hence, when this strategy is combined with the DSR protocol,

the success rate decreases as the dynamic ratio of the network increases.

Finally, we notice that when this strategy is combined with the DSDV pro-

tocol, it can achieve a higher success rate than when combined with the DSR

protocol. This strategy’s success rate with the DSDV protocol is 0.42% higher

than the one with the DSR protocol. We can synthesize the features of this greedy

strategy and the two routing protocols to clarify this observation. This strategy

uses a flooding algorithm which requires that all nodes post to all nodes and all

nodes query all nodes in the network. Thus, the underlying routing protocols

are required to accommodate the heavy routing demands. When this strategy

is combined with the DSDV protocol, the routing overhead remains constant re-

gardless of the amplitude of the routing demand. Alternatively, under the DSR

protocol, the routing overhead increases with the number of routing demands and

is larger than when using the DSDV protocol.

From Figures 5.3 and 5.4, we can summarize the following points. First, this

5.2. RESULTS AND DISCUSSION 66

Figure 5.3: Post-broadcast-h, query-broadcast-h strategy with h equal to the
network diameter DSR num. of transmitted messages

Figure 5.4: Post-broadcast-h, query-broadcast-h strategy with h equal to the
network diameter DSDV num. of transmitted messages

5.2. RESULTS AND DISCUSSION 67

strategy is very costly in terms of the total number of transmitted messages when

it is combined with the DSR protocol or DSDV protocol. From the flooding al-

gorithm used in this strategy, we can compute that the complexity of the number

of transmitted messages for each round is O(N 2), where N is the total number

of nodes in the network.

Second, we find that in the highest dynamic ratio network scenario (i.e. sce-

nario 30-30), this strategy has the lowest number of transmitted messages of the

three dynamic ratios. From our discussion of Figures 5.1 and 5.2, as the net-

work dynamic ratio increases, the DSR protocol has greater routing overhead,

and the DSDV protocol has a lower packet delivery ratio. Therefore, the number

of transmitted messages decreases.

Finally, when this strategy is combined with the DSR protocol, it has 4.9%

fewer transmitted messages than when using the DSDV protocol. In this strategy,

the former has more routing overhead than the latter.

From Figure 5.5, we can extract some characteristics of this strategy. First,

this strategy has the lowest average waiting time of all the strategies when com-

bined with the DSR protocol or DSDV protocol. The flooding algorithm used

here results in a large number of nodes posted to or queried from within a low

number of rounds.

Second, when this strategy is combined with the DSR protocol, the average

waiting time increases with the dynamic ratio since a higher dynamic ratio in the

5.2. RESULTS AND DISCUSSION 68

Figure 5.5: Post-broadcast-h, query-broadcast-h strategy with h equal to the
network diameter DSR and DSDV average waiting time

network scenario results in more routing overhead in the network, which length-

ens the average waiting time. When it is combined with the DSDV protocol, the

average waiting times of the three dynamic ratio scenarios are very similar. In

scenario 30-30, the average waiting time is slightly longer than that of the other

two scenarios, in scenario 100-10, this strategy has a slightly longer average wait-

ing time than the one in the scenario 300-01. The explanation of Figures 5.1 and

5.2 also indicates that as the dynamic ratio of the network scenarios increases,

the DSDV protocol has a lower packet delivery ratio; this results in fewer success-

ful clients and those clients which cannot find their services have longer waiting

times.

Finally, when this strategy is combined with the DSDV protocol, it has a

40% shorter average waiting time than the one when combined with the DSR

5.2. RESULTS AND DISCUSSION 69

protocol. As the aforementioned characteristics of the DSR protocol and DSDV

protocol indicate, the DSR protocol has to accommodate the heavy demands

of establishing the routes of all the nodes in the network, which is very time-

consuming. Yet the routing demands have little effect on the average waiting

time of the strategy when combined with the DSDV protocol. A route is prepared

before messages are sent with the DSDV protocol, which saves time when sending

a large number of messages in the network.

5.2.2 Conservative: Post-broadcast-h, query-broadcast-h strat-

egy with h equal to one

In this strategy, all the servers in the network post to their one-hop neighbors,

and all the clients query their one-hop neighbors using a network local broad-

cast mechanism. The number of broadcast hops h is equal to one. In contrast

to the aforementioned greedy strategy, this strategy is conservative because it

significantly reduces the number of transmitted messages. The strategy can also

achieve a high success rate in a high dynamic ratio ad hoc network. For ad hoc

networks with a lower dynamic ratio, the success rate is low because numerous

nodes may not be posted to or queried from at all. This strategy has a low

number of transmitted messages and a short average waiting time.

Figures 5.6 and 5.7 highlight the following features of this strategy. First,

we observe that this strategy can achieve a very high success rate of 100% when

5.2. RESULTS AND DISCUSSION 70

Figure 5.6: Post-broadcast-h, query-broadcast-h strategy with h equal to one
DSR success rate

Figure 5.7: Post-broadcast-h, query-broadcast-h strategy with h equal to one
DSDV success rate

5.2. RESULTS AND DISCUSSION 71

the dynamic ratio is the highest (i.e. scenario 30-30). When the dynamic ratio is

lower (i.e. scenario 100-10), this strategy can obtain a high success rate of 99.75%

when combined with the DSR protocol and a very high success rate of 100% with

the DSDV protocol. However, in the lowest dynamic ratio network scenario (i.e.

scenario 300-01), this strategy can only achieve a success rate of 82.25% with the

DSR protocol and 81.5% with the DSDV protocol. When the one-hop broadcast

mechanism is used, the higher the dynamic ratio of the network is, the more

nodes a server (client) can post to (query from), increasing the success rate of

the network. In a very low dynamic ratio scenario or in a low node density

scenario, numerous nodes may not be posted to or queried from at all, which

explains why the success rate may not reach 100%.

Second, when this strategy is combined with the DSR protocol, it has a 0.33%

higher success rate than the one when combined with the DSDV protocol. Using

the one-hop broadcast mechanism, the number of routing demands is relatively

low, which results in lower routing overhead when using the DSR protocol than

that of the DSDV protocol. Under this circumstance, the DSR protocol also has

a higher packet delivery ratio than the DSDV protocol.

Figures 5.8 and 5.9 show the following results. First, we observe that this

strategy has a low number of transmitted messages when it is combined with the

DSR protocol or DSDV protocol in a low dynamic ratio scenario (i.e. scenario

300-01). We also find that in the highest dynamic ratio scenario (i.e. scenario

5.2. RESULTS AND DISCUSSION 72

Figure 5.8: Post-broadcast-h, query-broadcast-h strategy with h equal to one
DSR num. of transmitted messages

Figure 5.9: Post-broadcast-h, query-broadcast-h strategy with h equal to one
DSDV num. of transmitted messages

5.2. RESULTS AND DISCUSSION 73

30-30), this strategy has the highest number of transmitted messages, as a node

in this scenario may encounter more nodes than in the other two scenarios. For

the same reason, the number of transmitted messages in scenario 100-10 is higher

than that in scenario 300-01.

Second, these two figures show that in the lowest dynamic ratio scenario 300-

01, the number of transmitted messages remains almost unchanged as the number

of rounds increases. This can be explained by noting that when the dynamic ratio

of the network is low, the topology of the network is static, and the nodes in the

network post to or query from almost the same one-hop neighbors in each round

and receive almost the same number of ServiceReply messages.

Finally, when this strategy is combined with the DSR protocol, we notice that

it transmits 23.68% more messages than with the DSDV protocol. As we clarified

concerning Figures 5.6 and 5.7, the DSR protocol has a lower routing overhead

and a higher packet delivery ratio than the DSDV protocol.

The average waiting times of the DSR protocol and the DSDV protocol are

shown in Figure 5.10. First, this strategy has a short average waiting time when

combined with the DSR protocol or the DSDV protocol. Second, as the dynamic

ratio of the scenario becomes higher, the average waiting time becomes shorter.

In a lower dynamic ratio network scenario (i.e. scenario 300-01), nearly 20% of

clients cannot find their services after this strategy is executed for the maximum

number of rounds. Thus, the waiting time is the number of rounds times the

5.2. RESULTS AND DISCUSSION 74

Figure 5.10: Post-broadcast-h, query-broadcast-h strategy with h equal to one
DSR and DSDV average waiting time

round interval, which results in a longer average waiting time. In a higher dy-

namic ratio network scenario (i.e. scenario 30-30), it only takes all the clients

four rounds to locate all the services they queried, so the average waiting time

is short. Finally, when this strategy is combined with the DSR protocol, it has

a 13.79% shorter average waiting time than the one with the DSDV protocol.

As noted concerning Figures 5.6 and 5.7, the DSR protocol has lower routing

overhead and a higher packet delivery ratio than the DSDV protocol.

5.2.3 Incremental: Post-incremental, query-incremental strat-

egy

In this strategy, all the servers (clients) in the network start posting to (querying

from) a small set of randomly chosen nodes in the first round. As the number of

5.2. RESULTS AND DISCUSSION 75

rounds increases, the size of this set gradually increases too. It uses a network

unicast mechanism. This strategy has a low number of transmitted messages. It

can also achieve a high success rate, while the tradeoff is a long average waiting

time. It has the longest average waiting time of all the strategies.

Figure 5.11: Post-incremental, query-incremental strategy DSR success rate

Figure 5.12: Post-incremental, query-incremental strategy DSDV success rate

From Figures 5.11 and 5.12, we can elicit the following observations. First,

5.2. RESULTS AND DISCUSSION 76

although this strategy can hardly achieve a 100% success rate when combined

with the DSR protocol or DSDV protocol, it can still achieve a relatively high

success rate of 94.75% with the DSR protocol and 81.75% with the DSDV proto-

col. Second, when this strategy is combined with the DSR protocol, the dynamic

ratio of the network scenario has a minimal effect on the success rate. In the

three dynamic ratio scenarios, it has a very similar success rate for each round,

and it can achieve high success rates of from 94.75% to 96% after ten rounds.

However, when the strategy is combined with the DSDV protocol, the dynamic

ratio affects the success rate significantly. The higher the dynamic ratio of the

network is, the lower the strategy’s success rate. For example, it achieves a high

success rate of 97% in the lowest dynamic ratio (i.e. scenario 300-01), but only

obtains a success rate of 87.75% in scenario 100-10, and gets the lowest success

rate of 81.75% in the lowest dynamic ratio scenario (i.e. scenario 30-30). This

strategy uses a network unicast mechanism. The size of the posting (querying)

set is small, so the routing demands in the underlying routing protocols are very

low. Under these circumstances, the DSR protocol has lower routing overhead

than the DSDV protocol, which has a relatively constant routing overhead re-

gardless of the routing demands in the same dynamic ratio scenario. With low

routing demands, the DSR protocol performs well even in a high dynamic ratio

network scenario. As the dynamic ratio of the network increases, the DSDV pro-

tocol’s packet delivery ratio decreases, causing the success rate to drop. When

5.2. RESULTS AND DISCUSSION 77

this strategy is combined with the DSR protocol, it has a 6.75% higher success

rate than the one when combined with the DSDV protocol.

Figure 5.13: Post-incremental, query-incremental strategy DSR num. of trans-
mitted messages

Figures 5.13 and 5.14 show several characteristics of this strategy. First,

we observe that this strategy has a low number of transmitted messages when

it is combined with the DSR protocol or the DSDV protocol. The number of

transmitted messages is in direct ratio with the number of rounds, because we

gradually increase the size of the posting (querying) set. Second, the dynamic ra-

tios of the network scenarios have a minimal effect on the number of transmitted

messages when this strategy is combined with the DSR protocol. In these three

dynamic ratio scenarios, this strategy has nearly the same number of transmitted

messages. However, when it is combined with the DSDV protocol, the network

with the higher dynamic ratio has slightly fewer transmitted messages than the

5.2. RESULTS AND DISCUSSION 78

Figure 5.14: Post-incremental, query-incremental strategy DSDV num. of trans-
mitted messages

network with the lower dynamic ratio. Finally, the number of transmitted mes-

sages is 1.29% more when the strategy is combined with the DSR protocol than

when combined with the DSDV protocol. As the explanation of Figures 5.11 and

5.12, when the routing demand is very low, the DSR protocol has a very high

packet delivery ratio and low routing overhead, which results in a similar number

of transmitted messages among the three dynamic ratio scenarios. The DSDV

protocol has a lower packet delivery ratio as the dynamic ratio of the network

increases, which reduces the number of transmitted messages.

Figure 5.15 reviews the following. First, this strategy has the longest average

waiting time of all the strategies. For a node in the network, it randomly chooses

one node to post to or query from in the first round. As the number of rounds

increases, the number of nodes which are randomly chosen also increases. These

5.2. RESULTS AND DISCUSSION 79

Figure 5.15: Post-incremental, query-incremental strategy DSR and DSDV aver-
age waiting time

nodes may be either within the same transmission range or multiple hops away

from the node. This strategy causes a large number of clients to receive Ser-

viceReply messages within a high number of rounds, which lengthens the average

waiting time. Second, when this strategy is combined with the DSR protocol, the

dynamic ratio of the network has a minimal effect on the average waiting time.

A network with a higher dynamic ratio has a slightly longer average waiting time

than the network with a lower dynamic ratio. As the number of rounds increases,

the routing demands increase as well. For example, in the ninth round, the num-

ber of total postings and queryings is 450, and in the tenth round it increases

to 500. With such routing demands, the DSR protocol in a high dynamic ratio

scenario has higher routing overhead in those rounds than in a low dynamic ratio

scenario. However, when the strategy is combined with the DSDV protocol, the

5.2. RESULTS AND DISCUSSION 80

dynamic ratio has a more significant effect on the average waiting time. As the

dynamic ratio increases, the average waiting time becomes longer. The discus-

sion of Figures 5.11 and 5.12 reveals that the DSDV protocol has a lower packet

delivery ratio as the dynamic ratio of the network increases, which results in more

clients waiting for a long time to receive their ServiceReply messages. Finally,

when this strategy is combined with the DSR protocol, it has a 12.94% shorter

average waiting time than with the DSDV protocol.

5.2.4 Uniform memoryless: Post-to-l, query-l′ strategy

In this strategy, all the servers in the network post their services to l nodes, and

all the clients query l′ nodes, where l and l′ are less than or equal to N and are

positive integers. This strategy uses a network unicast mechanism. It consists of

rounds of uniform and memoryless repetitions of the (l, l′) post-query protocol.

Thus, the number of transmitted messages is low and remains constant in each

round. Hence, this strategy uses a relatively low amount of network bandwidth

in each round if l and l′ are relatively low. It has a high success rate and a long

average waiting time.

The success rate of this strategy when it is combined with the DSR protocol

and the DSDV protocol is illustrated in Figures 5.16 and 5.17. We extract two

features of this strategy. First, although this strategy cannot achieve a 100%

success rate, it can still obtain a success rate of 92.5% when it is combined with

5.2. RESULTS AND DISCUSSION 81

Figure 5.16: Post-to-l, query-l′ DSR success rate

Figure 5.17: Post-to-l, query-l′ DSDV success rate

5.2. RESULTS AND DISCUSSION 82

the DSR protocol and of 88.25% with the DSDV protocol. The strategy requires

that for each round, all the servers post their services to l nodes and all the clients

query l′ nodes. The size of the posting set l and the querying set l′ influences

the success rate. In this strategy we choose l and l′ to be equal to five which

is relatively low. A randomly chosen node from the previous round may be

chosen again in the same round or in following rounds, so that after ten rounds

of posting (querying), some nodes may not be posted to or queried from at all,

which explains why the success rate may not reach 100%.

Second, we find that the dynamic ratio of the network has a minimal effect

on the success rate when this strategy is combined with the DSR protocol. In all

three scenarios, this strategy has a very similar success rate of each round, and

they can all achieve high success rates of from 87.5% to 92.5% after ten rounds.

However, it has a more significant effect on the success rate when combined with

the DSDV protocol. For example, the strategy can achieve a success rate of

88.25% in the lowest dynamic ratio scenario (i.e. scenario 300-01), but it only

obtains a success rate of 83.25% in scenario 100-10, and falls to 75.25% in the

highest dynamic ratio scenario (i.e. scenario 30-30). The higher the dynamic

ratio of the network is, the lower the success rate of this strategy. If l and l′

are relatively low, the routing demands of the underlying routing protocols are

relatively low. As was discussed in section 5.2.3., when the routing demands of

the network are low, the DSR protocol performs well even in a high dynamic

5.2. RESULTS AND DISCUSSION 83

ratio scenario. As for the DSDV protocol, the routing overhead has no significant

impact with respect to the dynamic ratio described by Broch et. al [10]. However,

it has a lower packet delivery ratio than the DSR protocol when the dynamic ratio

of the network increases. The strategy can obtain a 7.42% higher success rate

when it is combined with the DSR protocol than when combined with the DSDV

protocol.

Figure 5.18: Post-to-l, query-l′ DSR num. of transmitted messages

From Figures 5.18 and 5.19, we can note the following. First, this strategy

consumes a relatively low amount of network bandwidth for each round in terms

of the number of transmitted messages, when combined with the DSR protocol

or DSDV protocol. It is designed to uniformly post and query services for each

round, determining the same number of postings and queryings for each round.

When l and l′ are low, the number of ServiceReply messages are relatively low.

Second, we find that the dynamic ratio of the network scenarios has a minimal

5.2. RESULTS AND DISCUSSION 84

Figure 5.19: Post-to-l, query-l′ DSDV num. of transmitted messages

effect on the number of transmitted messages when this strategy is combined with

the DSR protocol. In each of the three network scenarios this strategy has almost

the same number of transmitted messages in each round. When this strategy is

combined with the DSDV protocol, the dynamic ratio has a minimal effect on

the number of transmitted messages. During these ten rounds, the strategy has

20 more total transmitted messages in the lowest dynamic ratio scenario 300-

01 than in scenario 100-10, and it has 22 more total transmitted messages in

scenario 100-10 than in the highest dynamic ratio scenario 30-30. The number of

transmitted messages is 1.11% more when combined with the DSR protocol than

with the DSDV protocol. As we explained for Figures 5.16 and 5.17, the DSR

protocol has a very high packet delivery ratio in all of the three dynamic ratio

network scenarios, while the DSDV protocol has a lower packet delivery ratio in

this strategy when the dynamic ratio of network scenarios increases.

5.2. RESULTS AND DISCUSSION 85

Figure 5.20: Post-to-l, query-l′ DSR and DSDV average waiting time

The average waiting times for the DSR protocol and the DSDV protocol are

shown in Figure 5.20. First, this strategy has a long average waiting time. A

node may be randomly chosen to be posted to or queried from multiple hops

away, so the average waiting time to receive the ServiceReply messages may be

very long. Second, when this strategy is combined with the DSR protocol, the

average waiting times of the three dynamic ratios are similar, which indicates a

minimal performance difference with respect to the dynamic ratio of the network.

However, when this strategy is combined with the DSDV protocol, as the dynamic

ratio increases, the average waiting time becomes longer. Finally, when this

strategy is combined with the DSR protocol, it has a 21.24% shorter average

waiting time than with the DSDV protocol. The explanation for Figures 5.16 and

5.17 also can illuminate this feature. When the underlying routing protocol is the

DSR protocol, this strategy has nearly identical success rates in all three dynamic

5.2. RESULTS AND DISCUSSION 86

ratio scenarios, because the DSR protocol has a very high packet delivery ratio

in these three dynamic ratio network scenarios. The DSDV protocol, however,

has a lower packet delivery ratio than the DSR protocol in this strategy when

the dynamic ratio of network scenarios increases. Under these circumstances, the

strategy combined with the DSDV protocol has more unsuccessful clients, which

lengthens the average waiting time.

5.2.5 With memory: Post-to-l, query-l′ with memory strat-

egy

This strategy is a modified Post-to-l, query-l′ strategy which aims to improve

the success rate by storing the identifiers of the posted or queried nodes. In this

strategy, using network unicast communication, all the servers in the network

post their services to l nodes, and all the clients query l′ nodes, where l and l′

are less than or equal to N and are positive integers. All the nodes memorize the

identifiers of the nodes they posted to or queried from in previous rounds. Each

round only involves nodes which have not been visited previously. When l and

l′ are chosen such that l times r is greater than or equal to N , and l′ times r

is greater than or equal to N , meaning that after r rounds, all the servers have

posted their services to all the nodes and all the clients have queried each node

in the network at least once, this strategy can achieve a very high success rate

of up to 100% when is combined with the DSR protocol, and at least 97.75%

5.2. RESULTS AND DISCUSSION 87

when combined with the DSDV protocol. Each node is required to have a cache

which stores all the identifiers of posted or queried nodes. It has a long average

waiting time and a low number of transmitted messages. Compared with the

uniform memoryless Post-to-l, query-l′ strategy, the success rate of this strategy

is improved by 10.34% with the DSR protocol and by 16.5% with the DSDV

protocol. The number of transmitted messages is 9% more when it is combined

with the DSR protocol and 6.6% more with the DSDV protocol. The average

waiting time of this strategy is 11.6% shorter with the DSR protocol and 12.4%

shorter with the DSDV protocol.

Figure 5.21: Post-to-l, query-l′ with visited nodes DSR success rate

Figures 5.21 and 5.22 highlight the following characteristics of this strategy:

First, we observe that this strategy can achieve a very high success rate of 100%

when it is combined with the DSR protocol, and a high success rate of 97.75%

with the DSDV protocol. In this strategy, we choose the same value for l, l′ as

5.2. RESULTS AND DISCUSSION 88

Figure 5.22: Post-to-l, query-l′ with visited nodes DSDV success rate

those chosen in Section 5.2.4 for fair comparison purposes. Let l and l′ be equal

to five, such that l times r is equal to N and l′ times r is equal to N , where r

is equal to ten. A node in this strategy memorizes the identifiers of the nodes it

has posted to or queried from in previous rounds. Only nodes which have not yet

been visited are involved in each round. This arrangement allows all nodes in the

network to have been posted and queried just once after ten rounds, which forces

a node to locate the service it wants by traversing all the nodes of the network

to achieve a high success rate.

Second, we find that when combined with the DSR protocol, the dynamic

ratio of the network has little effect on the success rate. This strategy has a very

similar success rate over each round, and it can achieve a very high success rate

of 100% in all of the three scenarios. However, the dynamic ratio has a minor

effect on this when combined with the DSDV protocol. The strategy can achieve

5.2. RESULTS AND DISCUSSION 89

a very high success rate of 100% in the lowest dynamic ratio scenario 300-01,

a success rate of 98.5% in scenario 100-10 and a success rate of 97.75% in the

highest dynamic ratio scenario 30-30. When this strategy is combined with the

DSR protocol, it has a 1.25% higher success rate than the one with the DSDV

protocol. As in the explanations of Figures 5.16 and 5.17, the DSDV protocol

has a lower packet ratio than the DSR protocol when the dynamic ratio of the

network scenario increases, therefore, the success rate decreases as the dynamic

ratio of the network increases. Compared with the uniform memoryless Post-to-l,

query-l′ strategy, the success rate of this strategy is improved by 10.34% when it

is combined with the DSR protocol and by 16.5% with the DSDV protocol.

Figure 5.23: Post-to-l, query-l′ with visited nodes DSR num. of transmitted
messages

Figures 5.23 and 5.24 show several features of this strategy. First, this strat-

egy has a low number of transmitted messages when combined with the DSR

5.2. RESULTS AND DISCUSSION 90

Figure 5.24: Post-to-l, query-l′ with visited nodes DSDV num. of transmitted
messages

protocol or DSDV protocol. It is designed to uniformly post to and query from a

constant number of nodes in each round, which determines the identical number

of postings and queryings for each round. As the number of rounds increases,

more and more nodes have been posted to or queried from without repetition,

resulting in more ServiceReply messages in the network. Second, we find that the

dynamic ratio of the network scenario has little effect on the number of trans-

mitted messages when this strategy is combined with the DSR protocol. This

strategy has almost the same number of transmitted messages in each round in

all three dynamic ratio network scenarios. When it is combined with the DSDV

protocol, the dynamic ratio has a minimal effect on the number of transmitted

messages. Within ten rounds, the strategy has 75 more total transmitted mes-

sages in the lowest dynamic ratio scenario 300-01 than in scenario 100-10, and

5.2. RESULTS AND DISCUSSION 91

it has 56 more total transmitted messages in scenario 100-10 than in the high-

est dynamic ratio scenario 30-30. The number of transmitted messages is 3.24%

more when the strategy is combined with the DSR protocol than with the DSDV

protocol. From the discussion of Figures 5.18 and 5.19, we note that the DSR

protocol has a very high packet delivery ratio in all three dynamic ratio network

scenarios, and the DSDV protocol has a lower packet delivery ratio than with

the DSR protocol in this strategy when the dynamic ratio of network scenarios

increases. Compared with the uniform memoryless Post-to-l, query-l′ strategy,

the total number of transmitted messages in this strategy is 9% more when it is

combined with the DSR protocol and 6.6% more with the DSDV protocol.

Figure 5.25: Post-to-l, query-l′ with visited nodes DSR and DSDV average wait-
ing time

The average waiting time for this strategy when it is combined with the DSR

protocol and the DSDV protocol is illustrated in Figure 5.25. We can summarize

5.3. SUMMARY 92

several characteristics from this figure. First, this strategy has a long average

waiting time. A node may be randomly chosen to be posted to or queried from

multiple hops away, so the waiting time to receive the ServiceReply messages may

be very long. Second, when this strategy is combined with the DSR protocol, the

average waiting times of these three dynamic ratio scenarios are similar. With

the DSDV protocol, the higher the dynamic ratio of the network, the longer the

average waiting time for this strategy. Third, we also notice that this strategy

has a 19.04% shorter average waiting time when combined with the DSR protocol

than with the DSDV protocol. We can refer to the discussion of Figure 5.20 to

give the reasons for the first two features of this strategy. Compared with the

uniform memoryless Post-to-l, query-l′ strategy, the average waiting time for

this strategy is 11.6% shorter with the DSR protocol and 12.4% shorter with the

DSDV protocol. As was mentioned for Figures 5.21 and 5.22, this strategy is able

to achieve a high success rate. This also implies that during these ten rounds,

almost all the clients find their services. In the uniform memoryless Post-to-l,

query-l′ strategy, some clients are not posted to or queried from, so these clients

may wait a longer time.

5.3 Summary

In Section 5.2 we reviewed in detail the three performance metrics of the greedy,

conservative, incremental, uniform memoryless and with memory strategies when

5.3. SUMMARY 93

they are combined with the DSR protocol and DSDV protocol. Table 5.1 gives a

complete view of the performance of these strategies when combined with these

protocols. For each strategy, we list the maximum success rate, average waiting

time and total number of transmitted messages.

Each of the metrics in Table 5.1 were calculated with a 90% confidence inter-

val. Table 5.1 can be summarized as follows based on the parameters we chose.

The greedy strategy consumes significant network resources, in terms of the num-

ber of transmitted messages, to achieve a high success rate of 100%. It has the

highest number of transmitted messages and the lowest average waiting time of

all the strategies.

The conservative strategy largely reduces the number of transmitted messages.

This strategy can also achieve a high success rate of 100% in a high dynamic ratio

ad hoc network. For ad hoc networks with a lower dynamic ratio, the success rate

is low (e.g. 81.5%), because numerous nodes may not be posted to or queried

from at all. This strategy has a low number of transmitted messages and a short

average waiting time.

The incremental, uniform memoryless and with memory strategies use a net-

work unicast mechanism. The size of the posting (querying) set affects the three

performance metrics to a considerable degree. According to our chosen parame-

ters, we can summarize as follow. The incremental strategy has a low number of

transmitted messages. It can also achieve a high success rate of 96%, while the

5.3. SUMMARY 94

Strategy Routing
protocol

Dynamic
ratio

Max.
success
rate

Total num.
of transmit-
ted msgs.

Average
waiting
time(s)

8.06 100% 16215 7.50
DSR 61.48 100% 15601 7.85

Greedy 190.72 98.75% 13100 10.42
8.06 100% 16557 4.93

DSDV 61.48 100% 15777 5.03
190.72 100% 14887 5.46
8.06 82.25% 2909 36.55

DSR 61.48 99.75% 5455 20.12
Conservative 190.72 100% 3620 8.42

8.06 81.5% 2122 37.62
DSDV 61.48 99.5% 4519 27.81

190.72 100% 3408 10.09
8.06 96% 2900 79.72

DSR 61.48 94.75% 2894 81.32
Incremental 190.72 96% 2899 83.76

8.06 97% 2898 83.23
DSDV 61.48 87.75% 2856 90.80

190.72 81.75% 2828 107.15
8.06 89% 2602 54.55

DSR 61.48 92.5% 2610 54.30
Uniform 190.72 87.5% 2602 57.72
memoryless 8.06 88.25% 2596 59.27

DSDV 61.48 83.25% 2577 64.57
190.72 75.25% 2555 87.64
8.06 100% 2845 46.96

DSR 61.48 100% 2833 47.29
With memory 190.72 100% 2832 53.05

8.06 100% 2816 51.89
DSDV 61.48 98.5% 2741 56.12

190.72 97.75% 2686 77.27

Table 5.1: Performance comparison of the five Post-query strategies when com-
bined with the DSR protocol and DSDV protocol

5.3. SUMMARY 95

tradeoff is that it has the longest average waiting time of all the strategies.

The uniform memoryless strategy consists of rounds of uniform and memo-

ryless repetitions of the (l, l′) post-query protocol. The number of transmitted

messages is low and remains constant in each round. Hence, this strategy uses

a relatively low amount of network bandwidth in each round, if l and l′ are rel-

atively low. In our design, both of them are set to five. It has a long average

waiting time.

The with memory strategy can achieve a very high success rate of up to 100%.

Each node is required to have a cache which stores all the identifiers of posted or

queried nodes. It has a long average waiting time and a low number of transmitted

messages. This strategy has the same l and l′ as the uniform memoryless strategy.

Compared with the uniform memoryless Post-to-l, query-l′ strategy, the success

rate of this strategy is improved by 10.34% with the DSR protocol and by 16.5%

with the DSDV protocol. The number of transmitted messages is 9% more when

it is combined with the DSR protocol and 6.6% more with the DSDV protocol.

The average waiting time of this strategy is 11.6% shorter with the DSR protocol

and 12.4% shorter with the DSDV protocol.

Among these five strategies, only the greedy strategy has a higher success

rate, a lower average waiting time and a higher number of transmitted messages

when combined with the DSDV protocol than with the DSR protocol. The other

four strategies have a lower success rate, a longer average waiting time and a

5.3. SUMMARY 96

lower number of transmitted messages when combined with the DSDV protocol

than with the DSR protocol. Among these five strategies, only the conservative

strategy has a higher success rate, a shorter average waiting time and a higher

number of transmitted messages in a high dynamic ratio network scenario. The

other four strategies have a lower success rate, a higher average waiting time and

a lower number of transmitted messages than in a high dynamic ratio network

scenario.

In Table 5.1, we have five Post-query strategies, each of which can be com-

bined with two types of ad hoc routing protocols. Each strategy, combined with

a routing protocol, has three different dynamic ratio network scenarios. Thus, we

have 30 combinations, so when we want to adopt a Post-query strategy to an ad

hoc network, this table can serve as a reference. Before we select a strategy, some

analysis should be conducted on the size of the ad hoc network, the available

ad hoc routing protocols, the dynamic ratio, the available support for broad-

cast and unicast communication, the amount of available bandwidth and the

specific requirements for the three performance metrics. For an ad hoc network

that supports broadcast communication which requires a high success rate and a

low average waiting time, regardless of the number of transmitted messages, the

greedy strategy combined with the DSDV protocol are a good choice. It can be

adopted in the different dynamic ratio network scenarios. For an ad hoc network

that supports broadcast communication which requires a high success rate and a

5.3. SUMMARY 97

low number of transmitted messages, regardless of the average waiting time, the

with memory combined with the DSR protocol are the most suitable one. When

we have an ad hoc network with a high dynamic ratio, the conservative strategy

combined with the DSR protocol or with the DSDV protocol are the best two

choices to achieve a high success rate with a low number of transmitted messages

and a low average waiting time. For an ad hoc network which can only spare

a dedicated bandwidth for a service discovery strategy, the uniform memoryless

strategy can meet this requirement when both l and l′ are relatively low, though

the corresponding success rate is not high.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

With the increasing use of ad hoc networks, mobile nodes need to discover the

available services in a network quickly and correctly. Therefore, research on

service discovery over ad hoc networks is attracting attention. An efficient ser-

vice discovery mechanism should balance its performance against its cost in the

context of ad hoc networks. In this thesis, five types of service discovery strate-

gies, namely the greedy, conservative, incremental, uniform memoryless and with

memory Post-query strategies combined with the DSR protocol and DSDV pro-

tocol, were investigated for their performance in three different dynamic ratio ad

hoc networks. In addition, efforts have been made on multiple fronts related to

the design, implementation, and simulation of these five strategies. The work of

98

6.2. FUTURE WORK 99

this thesis can be summarized as follows:

1. Proposal of the conservative Post-query strategy;

2. Design and implementation within the NS-2 environment of five Post-query

strategies: the greedy, conservative, incremental, uniform memoryless and

with memory Post-query strategies combined with the DSR protocol and

DSDV protocol;

3. Design of a simulation model which covers the following aspects: the selec-

tion and construction of network topologies, the choice of the parameters

used in the simulation, and the development of simulation scenarios for

different dynamic ratios;

4. Performance evaluation of these five strategies combined with the DSR

protocol and DSDV protocol.

The evaluation revealed the performance of these five strategies combined with

the DSR protocol and DSDV protocol. A summary of the performance evaluation

and design suggestions for different ad hoc networks is given in Section 5.3.

6.2 Future work

In this thesis we gave the design and implementation of the five Post-query strate-

gies in Chapter 3. We carried out simulations of all these five strategies combined

6.2. FUTURE WORK 100

with the DSR protocol and DSDV protocol in Chapter 4, and we evaluated the

performance of these five strategies in Chapter 5. In Section 5.3, we concluded our

evaluation results together with design suggestions for different ad hoc networks.

Several interesting problems remain for further investigation.

1. For the incremental, uniform memoryless and with memory Post-query

strategies which use unicast network communication, the sizes of the post-

ing and querying sets greatly influence the performance. For these three

strategies, we could dig deeper to evaluate how the performance is influ-

enced if we vary the sizes of posting and querying sets.

2. In order to maintain equivalent comparisons, our performance evaluation of

these five strategies adopted the same round interval and the same execution

interval for posting and querying. However, some Post-query strategies

such as the greedy and conservative strategies, may perform differently if

the round interval and the execution interval are variable.

3. We assumed that all the services of the network follow a uniform distri-

bution, such that each kind of service is requested with equal probability.

It would be very interesting to study networks in which the services have

different probabilities. For example, in some ad hoc networks more clients

may request a web browser service than request a scanner service.

4. We chose the DSR protocol and DSDV protocol as our typical ad hoc

6.2. FUTURE WORK 101

routing protocols. In the future, we may combine our Post-query strategies

with other kinds of ad hoc routing protocols such as AODV [Per99], TORA

[Par97] [Par98], OLSR [Jac01] and ZRP [Haa97].

5. We could extend our research according to the heuristic model proposed

by Koodli and Perkins [Koo02]. Their approach is to add extensions to

suitable ad hoc network routing protocols, in order to find the services and

routes to these services at the same time.

Appendix A

Message Sequence Chart 96

Standard

Post protocol
 Query protocol

1: broadcast ServicePost

node-ID, service-type

alt

2: check node-ID and service-type in service cache

3: save node-ID and service-type into service cache

t
1

node-ID and service-type have already

been saved in service cache, do nothing

expression frame

operand separator

operator

Figure A.1: Message sequence chart 96 example

Figure A.1 illustrates some standard notations of MSC96. The expressions

102

103

are enclosed by an expression frame. The operands are separated by a dashed

separation line, and the operator is depicted in the left upper corner of the ex-

pression frame. The operator alt describes a point of decision where one of several

alternative courses of action can be followed. However, the point of decision is

deferred to the point where the alternatives differ.

Bibliography

[Bar03] M. Barbeau, E. Kranakis, Modeling and Performance Analysis of Ser-

vice Discovery Strategies in Ad Hoc Networks, Proceedings of Interna-

tional Conference on Wireless Networks (ICWN), Las Vegas, Nevada,

2003.

[Blu01] Bluetooth, Specification of the Bluetooth System, Spec-

ification Volume 1, 2001, Specification Volume 2, 2001.

http://www.bluetooth.com

[Bro98] J. Broch, D. Maltz, D. Johnson, Y. Hu, J. Jetcheva, A Performance

Comparison of Multi-Hop Wireless Ad Hoc Network Routing Pro-

tocols, Proceedings of the Fourth Annual ACM/IEEE International

Conference on Mobile Computing and Networking (MobiCom’98), pp.

85-97, Dallas, TX, October 1998.

[Che02] L. Cheng, Service Advertisement and Discovery in Mobile Ad Hoc

Networks, Workshop on Ad Hoc Communications and Collaboration

104

BIBLIOGRAPHY 105

in Ubiquitous Computing Environments, New Orleans, Louisiana,

USA, November, 2002.

[Fal97] K. Fall, K. Varadhan, editors. ns notes and documentation. The VINT

Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC, November

1997. http://www.isi.edu/nsnam/ns/.

[Gut99] E. Guttman, C. Perkins, J. Veizades, M. Day, Service Location Pro-

tocol, Version 2, IETF RFC 2608, June 1999.

[Haa97] Z. Haas, M. Pearlman, The Zone Routing Protocol (ZRP) for Ad

hoc Networks, IETF Draft - Mobile Ad hoc NETworking (MANET)

Working Group of the IETF, November 1997.

[Hel03] S. Helal, N. Desai, V. Verma, C. Lee, Konark - A Service Discovery

and Delivery Protocol for Ad-hoc Networks, Proceedings of the Third

IEEE Conference on Wireless Communication Networks (WCNC),

New Orleans, March 2003.

[Her01] R. Hermann, D. Husemann, M. Moser, M. Nidd, C. Rohner, A.

Schade, DEAPspace - Transient Ad-Hoc Networking of Pervasive De-

vices, Computer Networks, vol. 35, pp. 411-428, 2001.

[Jac01] P. Jacquet, P. Muhlethaler, A. Qayyum, Optimized Link State Rout-

ing Protocol, IETF Draft, August 2001.

BIBLIOGRAPHY 106

[Joh96] D. Johnson, D. Maltz, Dynamic Source Routing in Ad-Hoc Wireless

Networks, in Mobile Computing, 1996

[Jub87] J. Jubin, J. Tornow, The DARPA Packet Radio Network Protocols.

Proceedings of IEEE, 75(1), pp. 21-32, January 1987.

[Koo02] R. Koodli, C. Perkins, Service Discovery in On-Demand Ad Hoc Net-

works, Internet-Draft, October 2002.

[Kra92] E. Kranakis, P. Vitányi, A Note on Weighted Distributed Match-

Making, in Mathematical Systems Theory, Vol. 25, 123-140, 1992.

[Lee99] S. Lee, M. Gerla, C. Toh, On-demand multicast routing protocol

(ODMRP) for ad hoc networks, Internet Draft, work in progress,

June 1999.

[Mal99] D. Maltz, The Effects of On-Demand Behavior in Routing Protocols

for Ad Hoc Networks, IEEE Journal on Selected Areas in Communica-

tions Special Issue on Mobile and Wireless Networks, pp. 1439-1453,

August 1999.

[Msc99] Tutorial on MSC-96, TIMe Electronic Textbook v 4.0,

http://www.item.ntnu.no/fag/SIE5020/msc/msc96.pdf, 1999.

[Mul88] S. Mullender, P.Vitányi, Distributed Match-Making, Algorithmica,

Vol. 3, pp. 367-391, 1988.

BIBLIOGRAPHY 107

[Nid01] M. Nidd, Service Discovery in DEAPspace, IEEE Personal Commu-

nications, August 2001.

[Par97] V. Park, M. Corson, A Highly Adaptive Distributed Routing Algo-

rithm for Mobile Wireless Networks. Proceedings of the IEEE Con-

ference on Computer Communications, pp. 1405-1413, Kobe, Japan,

April 1997.

[Par98] V. Park, M. Corson, A Performance Comparison of the Temporally-

Ordered Routing Algorithm and Ideal Link-State Routing. Proceed-

ings of IEEE Symposium on Computers and Communication’98, pp.

592-598, Athens, Greece, June 1998.

[Per94] C. Perkins, P. Bhagwat, Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers, Proceedings

of the ACM SIGCOMM’94 Conference on Communications Architec-

tures, Protocols and Applications, London, UK, pp. 234-244, August

1994.

[Per99] C. Perkins, E. Royer, Ad-hoc On-Demand Distance Vector Routing,

Proceedings of Second IEEE Workshop. Mobile Computing System

and Applications, February 1999.

[Sun99] Sun Microsystems, Technical White Paper: Jini Architectural

Overview. http://www.sun.com/jini/, December 1999.

BIBLIOGRAPHY 108

[Tuc93] B. Tuch, Development of WaveLAN, an ISM Band Wireless LAN.

AT&T Technical Journal, 72(4), pp. 27-33, July/August 1993.

