Solving Problems: Intelligent Search

Instructor: B. John Oommen

Chancellor’s Professor
Fellow : IEEE ; Fellow : IAPR
School of Computer Science, Carleton University, Canada

The primary source of these notes are the slides of Professor Hwee Tou Ng
from Singapore. | sincerely thank him for this.

Heuristic Search

Problem with DFS and BFS: No way to guide the search
Solution can be anywhere In tree.
In the worst case all possible states will be traversed

One “solution” to this problem

— Probe the search space
— Where is the final state likely to be

This of course will be problem specific

A function is usually created that evaluates:

— How good the current solution is
— This function is used to help guide the search process

This guided search called a Heuristic Search

A Heuristic

Derived from the Greek: heuriskein: “to find”; “to discover”

Has been used (and is sometimes still used) to mean:

— “A process that may solve a given problem, but offers no guarantees of
doing so” Newall, Shaw, & Simon 1963

Heuristics can also be thought of as a “Rule of Thumb”

Can refer to any technigue that improves average-case
but not necessarily worst-case performance

Here: A function that provides an estimate of solution cost

Advantage of Heuristics

X

1

I

>

(]

X

X X X
O

0]

X
X o X X X (0] O
(0] 0] X X

(6]

X X
0
O

s

Three wins through
a corner square

X

|
/ |
|

Four wins through
the center square

lx
1
|
|
1
|
!

Two wins through
a side square

Advantage of Heuristics:
Reduced State Space

8] o]
X X
s 1%~

L |

P h

s / 1 '

/r ;; \ I|
¥ r Y Y B Y
o] o X0
X X X X X X X

|

Performance of Heuristics

 Performance of several heuristics...

~ |3 @

Possible Heuristics

« Count the tiles out of place:

— State with fewest tiles out of place is gt ° ® 0
closer to the desired goal ——
» Distance Summation: et | °) °
— Sum all the distance by which the tiles [212}° ;] .
are out of place an |
— State with the shortest distance is TSRO | ommmbotout | 2 afaamroer

closer to the desired goal

e Count reversal Tiles:

— If two tiles are next to each other, and
the goal requires their position to be
swapped. The heuristic takes this into
account by evaluating the expression
(2 * number of direct tiles reversal)

Best-first Search

ldea: use an evaluation function f(n) for each node
— Estimate of “desirability”
— Expand most desirable unexpanded node

Implementation:
Order the nodes in fringe in decreasing order of desirability

Special cases:
— Greedy best-first search
— A’ search

Best-first Search

Combine BFS and DFS using a heuristic function

Expand the branch that has the best evaluation
under the heuristic function

Similar to hill climbing (move in the best direction)
But can go back to “discarded” branches

Best-first Search Algorithm

* Initialize OPEN to initial state, CLOSED to Empty list

« Until a Goal is found or no nodes left in Open do:

— Pick the best node in OPEN
— Generate its successors, place node in CLOSED
— For each successor do:

OPEN:

CLOSED:

» If not previously generated (not found in OPEN or CLOSED)
« Evaluate
- Add to OPEN

Generated nodes who’s children have not been evaluated yet

» Implemented as a priority queue (heap structure)

Nodes that have been examined

» Used to see if a node has been visited if searching a graph instead of a tree
» Same as in DFS and BFS

Paso[D

¢ dais ¢ dais T dais

S1sag Jo ajdwex3

Greedy Best-first Search

Evaluation function f(n) = h(n) (heuristic)
An estimate of cost from n to goal

* hg p(n) = straight-line distance from n to Bucharest

Greedy Best-first Search expands the node that
appears to be closest to goal

Th

Arad

Romania: Step Costs In Km

a0

Rimnieu ¥Wikcea

Urzicenl

[] ¥aslul

—] Hirsowa

Efarie

Straight-line distance

© Buchamst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ia=

Lugoj
MMehadis
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Tim=oars
Urziceni
Vashn

Zerind

k]

Q
L&
12
14l
176

151
236
11
141
1M

1
193
153
329

19
EYE

Example: Greedy Best-first Search

?

Example: Greedy Best-first Search

o>

Example: Greedy Best-first Search

=

o
..-... = - / \ . . .
368 178 380 133

Example: Greedy Best-first Search

< Amd

(o

=g

J
NETEE
o
W |
1]

Properties: Greedy Best-first Search

Complete?
— No — can get stuck in loops
— lasi 2> Neamt - lasi > Neamt -

Time?

— O(bm)

— But a good heuristic can a give dramatic improvement
Space?

— O(bm)

— Keeps all nodes in memory
Optimal?

— No

A" Search

A modification of the Best-first Search

Used when searching for the Optimal path

|ldea: Avoid expanding paths that are “expensive”
The heuristic function f(S) is broken into two parts:

Evaluation function f(n) = g(n) + h(n)
— g(n) = Cost so far to reach n
— h(n) = Estimated cost from n to goal
— f(n) = Estimated total cost of path through n to goal

How A" Works

Start
8
g(n)=0 1164
7 5
- T —
2|83 2/ 8|3 2/ 8|3
g(n) =1 1|86 1 4 6|4
NE 7165 7| s
Values of f(n) for each state, 6 | 6
where:
f(n) = g(n) + h(n),
gi(n) = actual distance from n
to the start state, and 1123
h{n) = number of tiles out of place. 3 4
71 6|5

Goal

How A" Works

Level of saarch

ain) =
1
2 lal3
Slate a nj=0
1|64 fia)= 4 ain)
7
-r’f" HH‘H,
i o o
28 2la|3 2la|3
Stata b Stata ¢ Stated ginj=1
116) =6 ! 4 fe)=4 1]&]4 fid)j=6
- 78 7 5.

HEE ANE BEE
12| Statee Tlalz| =aer [2 stateg o=z
fiaj=5 =5 fg)=&
HEE 7]¢ AE

o
(8]
’
!
¥

3 2] 8 (DB z[sl
4| Statan [] q[a|statel [4] alq] Stata) 1]ala| staek ainj=3
fihj=8& tilh=7 tifi=5 ik =7
5| .55'II 7|8 o ?ss'J
&
ilz|a
Stata | onj=4
a4 (n)
filj=5
7|els
/‘_‘\
1‘"‘
7 // "
i|z|a ilz|a
8 4| Statam 7l a|4| Staten anj=5
fimi=5 fim=7
7le|s| .s

A* Algorithm

 [|nitialize OPEN to initial state
» Until a Goal is found or no nodes left in OPEN do:
— Pick the best node in oPEN
— Generate its successors (recording the successors in a list);
— Place in CLOSED
— For each successor do:
» If not previously generated (not found in oPEN or CLOSED)
« Evaluate, add to OPEN , and record its parent

> If previously generated (found in oPEN or CLOSED), and if the new path is
better then the previous one

« Change parent pointer that was recorded in the found node

» If parent changed
« Update the cost of getting to this node
» Update the cost of getting to the children

— Do this by recursively “regenerating” the successors using the list of
successors that had been recorded in the found node

« Make sure the priority queue is reordered accordingly

Properties of A*

« Becomes simple Best-first Search if g(S) = O for every S

 When a child state is formed
— g(S) can be incremented by 1
— Or be weighted based on the production system operator generated the state

* Is Breadth-first Search if g += 1 per generation and h=0 always

Properties of A*

 If his the perfect estimator of the distance to the Goal (say, H)
— A* will immediately find and traverse the optimal path to the solution
— Will need NO backtracking

 If h never overestimates H
— A* will find an optimal path to the solution (if it exists)
— Problem lies in finding such an h

h Under/Over Estimates H

h Underestimates H h Overestimates H

Returned, but longer path

G Goal is G

Importance of Heuristic Function

* |f we have the exact Heuristic Function H
— The search gets solved optimally

« Exact H is usually very hard to find

— In many cases it would be a solution to an NP problem in polytime

— Which is probably not possible to compute in less time than it would take to
do the exponential sized search

 Next best: Guarantee h underestimates distance to the Sol".
— A minimum path to the Goal is then guaranteed

Heuristic Function vs. Search Time

* The better the heuristic, the less searching
— Improves the average time complexity

« However, to compute such a heuristic
— Can figure out a good algorithm
— Usually costs computation cycles
— This could be used to process more nodes in the search
— Trade-off between complex heuristics vs. more search done

Example: A® Search

JEE=0+366

Example: A* Search

< Amd

| imisoara

393=140+253 e

449=754374

Example: A® Search

—— T —

-

———

ST
T N #47=118+320 449=75+374
> G

G45=280+366 415=239+176 671=231+380 413=220+193

Example: A® Search

a hlad_:}
——— —— . I |
< __Sh.u_;:: “
T 447=1184329 449=75+374

G46=280+366 +15=239+178 GT71= 291+:3-E|C|

{Clai:'.wa I F;.i.tasﬁ ¥ .

525=386+180 417=317+100 553=300+253

Example: A® Search

b

= 447=118+329 448=75+374

o -
— -' .,
’ r ..
-,

Fagamas Cradsa
646=280+366 - . 671=231+380 .

591=338+253 450=450+0 E26=366+160 H17=317+100 553=300+253

Example: A" Search

gim&g

.

Shlu - imisoara,
b

447=118+329

m

545—253+:366 N 6?1 2314380

--

591=338+253 450=430+0 526=366+160 | . 553-300+253

PET=D G G

418=418+0 &15=455+160 6O7=414+193

He9=r5+3T4

Other Example: A" Search

* Please see the other Powerpoint in the folder...

Admissible Heuristics

A heuristic h(n) is Admissible if for every node n, h(n) < h*(n),
where h'(n) is the true cost to reach the goal state from n.

An admissible heuristic never overestimates the cost to reach the
goal, i.e., it is optimistic

Example: hg, 5(n) (never overestimates the actual road distance)

Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Proof: Optimality of A’

Suppose some suboptimal goal G, has been generated and is in the fringe.

Let n be an unexpanded node in the fringe such that n is on a shortest path to an
optimal goal G. Start

N

f

9 G,
f(G,) =g(G,) Since h(G,) =0
g9(G,) > g(G) Since G, is suboptimal (2)
f(G) =9(G) Since h(G) =0 (3)

f(G2) =a(Gy) > g(G) (from (2)) = f(G) (from (3))
f(G,) >f(G) From above

Proof: Optimality of A’

« Suppose some suboptimal goal G, has been generated and is in the fringe.
« Let n be an unexpanded node in the fringe such that n is on a shortest path to an

optimal goal G.

- f(Gy) > f(G)

* h(n) < h*(n)

* g(n) +h(n) <g(n) + h'(n)
« f(n) <f(G)

Hence f(G,) > f(n).

Srart

N

f

¢O &,

From above
Since h is admissible

Thus A" will never select G, for expansion

Consistent Heuristics

A heuristic is consistent if for every node n, every successor n' of n
generated by any action a,

h(n) < c(n,a,n’) + h(n") (4)
c(n,a,n’)
If h Is consistent, we have
f(n’) =g(n’) + h(n’)
=g(n) +c(n,a,n’) + h(n’) (By (4))
2 g(n) + h(n)
=1f(n)

l.e., f(n) is non-decreasing along any path.

h(n’)

Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal.
Essentially since: At the very end — h(G) = 0.

Optimality of A’

« A’ expands nodes in order of increasing f value
« Gradually adds "f-contours" of nodes
« Contour i has all nodes with f=f, where f, <f,;

Properties of A*

Complete?

— Yes (unless there are infinitely many nodes with f < f(G))

Time?
— Exponential

Space?

— Keeps all nodes in memory

Optimal?

— Yes

Admissible Heuristics

The 8-puzzle:

h,(n) = number of misplaced tiles
h,(n) = total Manhattan distance
(i.e., No. of squares from desired location of each tile)

7

7 2 4

5 6

8 3 1
Start State

.+ h(S)=78

* h,(S) =7 3+1+2+2+2+3+3+2 = 18

Goal State

Dominance

If h,(n) = h,(n) for all n (both admissible)
then h, dominates h;
h, is better for search

Typical search costs (average number of nodes expanded):

d=12 IDS = 3,644,035 nodes
A’(h)) = 227 nodes
A’(h,) = 73 nodes

d=24 IDS =too many nodes
A’(h;) = 39,135 nodes
A’(h,) = 1,641 nodes

Relaxed Problems

A problem with fewer restrictions on the actions is called a
relaxed problem

The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere, then h,(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any
adjacent square, then h,(n) gives the shortest solution

Beam Search

« Same as BestFS and A* with one difference

 Instead of keeping the list OPEN unbounded in
size, Beam Search fixes the size of OPEN

« OPEN only contains the best K evaluated nodes

Beam Search

 If new node considered is not better then any in
OPEN, and OPEN is full, new node is not added

 If new node is to be inserted in the middle of the
priority queue, and OPEN is full, drop the node at
the end of OPEN (the one with the least priority)

Local Beam Search

Keep track of k states rather than just one
Start with k randomly generated states

At each iteration, all the successors of all k states
are generated

If any one Is a goal state, stop; else select the k
best successors from the complete list & repeat.

Local Search Algorithms

In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution

State space = set of “complete” configurations
Find configuration satisfying constraints, e.g., n-queens

In such cases, we can use local search algorithms
keep a single “current” state, try to improve it

Hill Climbing Search

» “Like climbing Everest in thick fog with amnesia”

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current +— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor+— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current +— neighbor

Example: n-queens

* Put n gueens on an n x n board
* No two queens on the same row, column, or diagonal

N
.

Eviy . EvE
= 5w

W W T

Example: 8-queens

13.14 13.14
16 15.14.15
14.13 15.14

14 w 18 18

W6 1= s W s W
18 w 15 w
14 17 . 14 . 18

h = No. of pairs of queens that are attacking each other, either directly or indirectly
h = 17 for the above state

Hill-climbing Search: 8-queens problem

hl i I‘Hfl

-'-'-'-'

e

 Alocal minimumwith h=1

Hill Climbing Search

Simple-Hill-Climber (S)
« Evaluate S; If Goal state return and quit
« Loop until a solution is found or no neighbors left
— Look at next neighbor NN
— Evaluate NN
> If NN is Goal return and quit
» If NN is better than S, S := NN
» Reset neighbors

Hill Climbing Search

Steepest-Ascent-HC (S)
« Evaluate S; If Goal state return and quit
« SUCC =S
» Loop until a solution is found or no neighbors left
— For all neighbors (NN) of S
» Evaluate NN
> If NN is Goal then return NN and quit
> If NN is better than SUCC then SUCC := NN
— If SUCC is better than S then
» S :=SUCC
» Reset neighbors

Hill Climbing Continued

Stochastic-Hill-Climber (S)
« Evaluate S; If Goal state return and quit

« Loop until a solution is found or no neighbors left
— Look at some random neighbor RN
— Evaluate RN
> If RN is Goal return and quit

> If RN is better than S
* S:=RN
» Reset neighbors

Hill Climbing Search

Problem: Local maxima or plateau...

-:ub_j:cti'.'ifun:ti-:nn global maxirmim

e

shoulder

N

local maxirmm

_.ad“"d-ﬁ-'

"flat” local maximmm

] il [space
cument

Etate

Problems with Hill Climbing

 Hill Climbing will get stuck at local maxima in the space
« Can get stuck on a “plateau”

Solutions

« Backtrack to earlier node and force it to go in a new direction
« Take a big jJump to somewhere else in search space

« Simulated Annealing (Will study this next)

« Genetic Algorithms

Simulated Annealing Search

Simulate the annealing process of creating metal alloys

Start off hot, and cool down slowly which allows the various
metals to crystallize into a global uniform structure

If cooled too fast the metals crystallize in pockets
If cooled too slowly, a uniform crystallization but wastes time

Simulated Annealing Search

Use this idea to try to find global minimum

Now finding minimum instead of maximum -- but it's the same
Wander from the hill-climbing while system still hot

Reduce to hill climbing as system cools

Properties: Simulated Annealing

* One can prove:

— If T decreases slowly enough, then simulated annealing search
will find a global optimum with probability approaching unity

« Widely used in VLSI layout, airline scheduling, etc

Detalls: Simulated Annealing

The probability to move to a higher energy state in physics is

1

P = gkt
e

where k is the Boltzman constant

Similarly, in SA (when finding the minimum), the probability to move to a
state with a higher (worse) heuristic is:

1

where P = T

AE = (value of current state) - (value of new state)
T(t) is the temperature schedule (a function of time t)

— Temperature monotonically decreases with time,
— Eventually T reaches 0 when the system becomes simple “hill descending”

SA Detalls When Maximizing

« The probability to move to a state with a lower (worse) heuristic
function evaluation in SA is

where

AE = (value of new state) - (value of current state)

(The negation of the AE used when minimizing)

T(t) is the temperature schedule (a function of time t)
— Temperature monotonically decreases with time
— Eventually T reaches 0 when the system becomes simple “hill climbing”

Simulated Annealing Algorithm

Simulated-Annealing (problem, schedule) From Russell and Norvig
Current := Initial-State(Problem)
fort:=1too«do
T := schedule(t)
If T =0 then return Current
Next := a randomly selected successor of Current
AE = Value(Next) - Value(Current)
If AE > 0 then
“Always go to a better solution”
Current := Next
Else
“Leave a better solution for a worse one with prob. e AE/T”
Current := Next only with probability e AE/T

SA: Meta Heuristics

If the solution Is better:
— Always move to it

If the solution is worse but the slope up is shallow:
— Try it out
If the solution is worse but the slope Is steep:

— Don't try it out as readily (with an exponentially decreasing probability)

As time goes on, don’t try worse solutions as frequently
— Again with an exponentially decreasing probability

SA Effects

« At the beginning of the process (when T(t) is large)
— The probability of moving to poorer states, or moving along a plateau is large.
— So the space can be well searched
— Local minimums can be passed over
— Ignore steep ascents
» This implies that you are in a deep valley, which is assumed to be good

« As time increases
— The search gets trapped in one valley and gets stuck as T(t) becomes small
— The probability of getting out of the Valley is too small.

At this time

— SA becomes “hill descending”
— Descends to the bottom of that valley - hopefully the global minimum

Genetic Algorithms

A successor state is generated by combining two parent states
Start with k randomly generated states (population)

A state is represented as a string over a finite alphabet (often a
string of Os and 15s)

Evaluation function (fitness function). Higher values for better
states.

Produce the next generation of states by selection, crossover, and
mutation

Genetic Algorithms

24748552

24 31%

A

32752411

23 299%

24415124

20 269%

32543213

11 14%

la)

Thitial E'-:nj_::u lation

« Fitness function: Number of non-attacking pairs of queens

=]

Fith=ss Function

32752411

24748552

>~

32752411

fy

>~

24415124

)

Selecticn

(min =0, max =8 x 7/2 = 28)
o 24/(24+23+20+11) = 31%
o 23/(24+23+20+11) = 29% etc

32748552 ~ 327481z
24752411 —= 24752411
32752124 - 322Fz2124
24415411 | 24415417
idi (=]
Cioss—Cver Mutation

Genetic Algorithms

OR Graphs vs. AND-OR Graphs

* In the previous search techniques, Solution can be
found down any path independent of any other path

* This is called an OR graph

 However, there may be sub-goals that must all be
solved for a solution to be found

— Each sub-goal is its own sub-tree

— All sub-trees must have its own end state found if the path is to be
considered satisfied

* This is called an AND-OR graph

Example of an AND-OR Graph

« (Getting software to accomplish a task

Obtain Software

- ‘\

CPirate Software> (Get Disk

Problem Reduction Algorithm

 Initialize the graph to the starting node
« Until the starting node is labeled SOLVED or its cost > FUTILITY do:
— Start at initial node and traverse best path
» Accumulate set of nodes on path not expanded or labeled SOLVED
— Pick an unexpanded node and expand
» If no successors, node cost = FUTILITY
» Add successors to graph after computing the heuristic f for each
» If f = 0 for any node mark node as SOLVED
— Propagate change back through path
» If child is an OR child and is SOLVED mark parent as SOLVED
» If AND children are all solved, mark parent as SOLVED
» Change the estimate of f as determined by children

» As we back up the tree, change current best path associated with
each node (on the original best path) if updated f values warrant it

Example of Problem Reduction (AO*)

@)

Q

©) \

3) (4))

(4)

When you calculate costs, remember to use the cost PLUS the depth

Example of Problem Reduction (AO*)

4

Interacting Sub-goals

Branch and Bound

* If we know that current path (branch) is already
worse than some other known path:

— Stop Expanding It (Bound).

« Have already encountered Branch and Bound:

— A* stops expanding a branch if its heuristic value h becomes
larger than some other branch

Constraint Satisfaction Problems
and Branch and Bound

* Problems where there are natural constraints on the
system (fixed resources, impossibility conditions, etc.)

« Constraints: Handled by Branch and Bound technigue

— Branch out in your normal search pattern

— Stop expanding a branch if it fails a constraint (backtracking may
occur when that happens)

« Trivial example: Missionaries and Cannibals

— Do not continue to search along a branch if the Cannibals have just
eaten some (or all) of the Missionaries

Games vs. Search Problems

« “Unpredictable” opponent
— Specifying a move for every possible opponent reply

* Time limits
— Unlikely to find goal, must approximate

Mini-Max Search

Search to find the correct move in a two player game
Since 1950’s: Has been the foundational scheme

The optimal solution:
— Exponential algorithm
— Generate all possible paths
— Only play those that lead to a winning final position

Realistic alternative to the Optimal

Use finite depth look-ahead with a heuristic function
for evaluating how good a given game state is

Mini-Max

« Extend Tree down to a given search depth

« Top of tree is the Computer's move
— Wants move to ultimately be one step closer to a winning position
— Wants move that maximizes own chance of winning

* Next move is Opponent’s

— Opponent assumed to perform a move that his best
— Wants move that minimizes Computer’s chance of winning

Game tree
2-player, Deterministic, Turns

MAX (X}
X X X
MIN (O) X X X
X X X
x[o x| (o] [x]
MAX (X) o
x[olx| [x[o X0
MIN (O) X X
x[olx| [x[o[x] [xTo[x o
TERMINAL | [0 X| (00X X
o X[xjo| [xolo
Utility 1 0 +1

Mini-Max

« Perfect play for deterministic games

* |dea: Choose move to position with highest Mini-Max value
= Best achievable payoff against best play

« Example: 2-ply game:

Tl A

MM

Mini-Max for Nim

« Game of Nim
— Two players start with a pile of tokens

— Legal move: Split (any) existing pile into two non-empty
differently sized piles

— Game ends when no pile can be unevenly split
— Player who cannot make his move loses the game

« Search strategy
— Existing heuristic search methods not needed
— Search the whole tree

Mini-Max for Nim

Label nodes as MIN or MAX, alternating for each level
Define utility function (payoff function).

Do full search on tree
— Expand all nodes until game is over for each branch

Label leaves according to outcome

Propagate result up the tree with:
— M(n) = max(child nodes) for a MAX node
— m(n) = min(child nodes) for a MIN node

Best next move for MAX is the one leading to the child
with the highest value (and vice versa for MIN)

Im

-Max for N

NI

M

MIN

MAX

MIN

A

[4—1—1—1

| 3-2-1-1 \J

™
"~ k "1//(\‘
- i
| 2-2-2-1

MAX

MIN

-

2-1-1-1-1-1

A

MAX

2-1-1-1-1-1

—

Mini-Max Algorithm

Operator: The same as “move” to be made

Utility: The value of the heuristic at that juncture

EVAL: Computes this heuristic value

Cutoff: Either Game is Done or Search Deep Enough
Successors: Possible moves at the next level

Max and Min algorithms are almost identical
MINIMAX-DECISION: The actual decision that is made

Mini-Max Algorithm

function MINIMAX-DECISION(game) returns an operator
for each op in OPERATORS[game] do
VALUE[op] := MIN-VALUE(APPLY (op, game), game)
end
return the op with the highest VALUE[op]

function MAX-VALUE(state, game) returns a utility value
if CUTOFF-TEST(state) then return EVAL(state)
value ;= -
for each s in SUCCESSORS(state) do
value := MAX(value, MIN-VALUE(s, game))
end
return value

function MIN-VALUE(state, game) returns a utility value
if CUTOFF-TEST(state) then return EVAL(state)
value ;= o
for each s in SUCCESSORS(state) do
value := MIN(value, MAX-VALUE(s, game))
end
return value

Problems with Mini-Max

* Horizon Effect: Finite Depth; Can’t see beyond
— Exponential increase in tree size, only very limited depth feasible
— Solution: Quiescence search (a state of quietness or inactivity)
» Start at the leaf nodes of the main search
» Try to solve this problem
» |s there something “obvious” we are missing?
» One option is good but all other options look bad???
— In Chess: Quiescence searches usually include all capture moves
» Tactical exchanges don't mess up the evaluation (PXB; QXB)

» Quiescence searches: Look for moves which destabilize the
evaluation function

» |f there is such a move: The position is not quiescent

Problems with Mini-Max

« May want to use look up tables
— For end games
— Opening moves (called Book Moves)

Properties of Mini-Max

Complete?
— Yes (if tree is finite)
Optimal?
— Yes (against an optimal opponent)
Time complexity?
— O(b™)
Space complexity?
— O(bm) (depth-first exploration)
Chess: b = 35, m =100 for “reasonable” games

— Exact solution completely infeasible
— Shannon: Search space as large as 1042

Branch and Bound: The a-[3 Algorithm

« Branch and Bound:
— If current path (branch) is worse then some other known path:
— Stop expanding it (bound).

« Alpha-Beta:
— A branch and bound technique for Mini-Max search
— Know that the level above won’t choose your branch

» Because you have already found a value along one of
your sub-branches that is too good

» Stop looking at other sub-branches that haven’t been
looked at yet

The a- Algorithm

Instead of maintaining a single mini-max value
— The a-B pruning algorithm, maintains two: a, 3

Together:

— Provide a bound on the possible values of the mini-max tree

At any given point, a: minimum the player can expect
At any given point, 3: maximum the
Guarantee: | can always get between a and 8

The a- Algorithm

If ever (B <= a): Bound is reversed or range of O
— Better options exist for the player at other pre-explored nodes

As a is the minimum value we know we can get
— This node cannot be the mini-max value of the tree.
— No point in exploring any more of this node's children

Potentially save considerable computation time
Fantastic when large branching factor/depth

Properties of a-[3

Pruning does not affect final result (The Mini-max soln.)
Good move ordering improves pruning effectiveness

With “perfect ordering” time complexity = O(b™?)
— Doubles depth of search

a-B Search
— A simple example of the value of reasoning
— Which computations are really relevant

Why it is called a-f3

« a: Value of the best choice
found so far at any choice MAX
point along the path for max
* |fvis worse than a
— max will avoid it MM
— prune that branch

» Define 3 similarly for min

"
wt®

MAX

MIN

Effects of a-3

MAX

MIN

A has B = 3 (A will be no larger than 3)
Bis B pruned, since5>3

C has o = 3 (C will be no smaller than 3)
Dis a pruned, since 0 <3

Eis o pruned, since2 <3

Cis3

Example: a-3 Pruning

Il A

M

23

Example: a-3 Pruning

T AK

M

Example: a-3 Pruning

hl A

iy

Example: a-3 Pruning

AKX

MM

Example: a-3 Pruning

Il A

1M

The a-B Algorithm

o = best score for MAX so far game = game description

 From Russell and NOrvig g - best score for MIN so far
* Only Change from Mini-Max: The lines in Green

state = current state in game

function MAX-VALUE(state, game, a, p) returns a utility value

if CUTOFF-TEST(state,) then return EVAL(state)
for each s in SUCCESSORS(state) do

o ;= MAX(a, MIN-VALUE(s, game, a, p))

if o > 3 then return o /*Only line that is different™®/
end
return o

function MIN-VALUE(state, game, a, p) returns a utility value

if CUTOFF-TEST(state) then return EVAL(state)
for each s in SUCCESSORS(state) do

B = MIN(L, MAX-VALUE(s, game, o, [5))

if B < o then return (3 /*Only line that is different™®/
end
return 3

The a- Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game

v4— MaX-VALUE(state, —oc, +00)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state, o, B) returns a utility value
inputs: state, current state in game
«, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(Sstate)
U4 —00
for a,sin SUCCESSORS(state) do
v Max(v, MIN-VALUE(S, o, 3))
if v > 3 then return v
a — MAX(a, v)
return v

The a- Algorithm

function MIN-VALUE(state, o, §) returns a utility value
inputs: state, current state in game
«, the value of the best alternative for MAX along the path to state
{3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
U4—+0C
for a,s in SUCCESSORS(state) do
v4— MiN(v, MAX-VALUE(Ss, a, 3))
if v € a then return v
8« MIN(5, v)
return v

Improving Game Playing

* Increase Depth of Search
« Have better heuristic for game state evaluation

Changing Levels of Difficulty

 Increase Depth of Search

Resource Limits

« Suppose we have 100 secs, explore 104 nodes/sec
— 10° nodes per move

« Standard approach:
— Cutoff test: Depth limit (perhaps add quiescence search)

« Evaluation function:
— Estimated desirability of position

Quiescence search

Quiescence search: Study moves that are noisy
They appear good, but moves around them - bad
Investigate them with a localized leaf search

Attempt to identify delaying tactics and change
the seemingly-good value of the node

A very natural extension of Mini-Max

Simply run search again at a leaf node until that
leaf node becomes quiet

As with iterative deepening, running time of the
algorithm won't increase by more than a constant

Evaluation Functions

Chess, typically linear weighted sum of features
Eval(s) = w, f;(s) +w, fy(s) + ... + w, f (S)

Example: w; =9 with
f,(s) = (number of white queens) — (number of black queens)
etc.

Cutting-Off Search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff? (Have | reached a Cutoff Point)
2. Ultility is replaced by Eval

Does it work in practice?
b™ = 10°, b=35 > m=4

4-ply lookahead is a hopeless Chess player!
— 4-ply = human novice
— 8-ply = typical PC, human master
— 12-ply = Deep Blue, Kasparov

Real Deterministic Games

* Checkers: Chinook ended 40-year-reign of
human world champion Marion Tinsley in 1994.
— Used a precomputed endgame database

— Defining perfect play for all positions involving 8 or fewer
pieces on the board - a total of 444 billion positions.

* Chess: Deep Blue defeated human world
champion Kasparov in a six-game match in 1997.
— Deep Blue searches 200 million positions per second

— Uses very sophisticated evaluation

— Undisclosed methods for extending some lines of search up
to 40 ply.

Real Deterministic Games

« Othello: Human champions refuse to compete
against computers, who are too good.

Things to Remember: Games

Games are fun to work on!

They illustrate several important points about AT
Perfection is unattainable

Must approximate paths and solutions

Good idea to think about what to think about

