Artificial Intelligence Agents and Environments¹

Instructor: Dr. B. John Oommen

Chancellor's Professor
Fellow: IEEE; Fellow: IAPR
School of Computer Science, Carleton University

School of Computer Science, Carleton University, Canada.

¹The primary source of these notes are the slides of Professor Hwee Tou Ng from Singapore. I sincerely thank him for this.

Intelligent, Autonomous Agents

- Agent
 - Anything that can be viewed as perceiving its environment
 - Perception done through sensors
 - Acting upon that environment through actuators
- Human agent
 - Eyes, ears, and other organs for sensors
 - Hands, legs, mouth, and other body parts for actuators
- Robotic agent
 - Cameras and infrared range finders for sensors
 - Various motors for actuators

Intelligent, Autonomous Agents

- Agent
 - Anything that can be viewed as perceiving its environment
 - Perception done through sensors
 - Acting upon that environment through actuators
- Human agent
 - Eyes, ears, and other organs for sensors
 - Hands, legs, mouth, and other body parts for actuators
- Robotic agent
 - Cameras and infrared range finders for sensors
 - Various motors for actuators

Intelligent, Autonomous Agents

- Agent
 - Anything that can be viewed as perceiving its environment
 - Perception done through sensors
 - Acting upon that environment through actuators
- Human agent
 - Eyes, ears, and other organs for sensors
 - Hands, legs, mouth, and other body parts for actuators
- Robotic agent
 - Cameras and infrared range finders for sensors
 - Various motors for actuators

Agents Rasic (Sim

Basic (Simple Reflex) Agent Model-based Reflex Agent Boal and Utility-based Agents Evaluating Agents

Agents...

Agent: Mapping: Percept Sequences ⇒ Actions

- Agent Function
- Maps from percept histories to actions: $[F: P^* \rightarrow A]$
- Agent Program
- Runs on the physical architecture to produce F
- Agent = Architecture + Program
- Vacuum Cleaner Agent
 - Percepts: Location and Contents: {[LocA, Dirty], ... }
 - Actions: Left, Right, Suck, VacuumOn, VacuumOff
 - Agent: Function(PerceptHistory, Vacuum-agent-function-table)

- Agent Function
- Maps from percept histories to actions: $[F: P^* \to A]$
- Agent Program
- Runs on the physical architecture to produce F
- Agent = Architecture + Program
- Vacuum Cleaner Agent
 - Percepts: Location and Contents: {[LocA, Dirty], ... }
 - Actions: Left, Right, Suck, VacuumOn, VacuumOff
 - Agent: Function(PerceptHistory, Vacuum-agent-function-table

- Agent Function
- Maps from percept histories to actions: [F : P* → A]
- Agent Program
- Runs on the physical architecture to produce F
- Agent = Architecture + Program
- Vacuum Cleaner Agent
 - Percepts: Location and Contents: {[LocA, Dirty], ... }
 - Actions: Left, Right, Suck, VacuumOn, VacuumOff
 - Agent: Function(PerceptHistory, Vacuum-agent-function-table)

- Agent Function
- Maps from percept histories to actions: [F : P* → A]
- Agent Program
- Runs on the physical architecture to produce F
- Agent = Architecture + Program
- Vacuum Cleaner Agent
 - Percepts: Location and Contents: {[LocA, Dirty], ... }
 - Actions: Left, Right, Suck, VacuumOn, VacuumOff
 - Agent: Function(PerceptHistory, Vacuum-agent-function-table)

- Agent should strive to "do the right thing":
- Based on what it can perceive and actions it can do
- The "right action":
- One that will cause the agent to be "most successful"
- Performance measure:
- Objective criterion for success of an agent's behavior
- Performance of a vacuum-cleaner agent could be:
- Amount of dirt cleaned up
- Amount of time taker
- Amount of electricity consumed
- Amount of noise generated, etc.

- Agent should strive to "do the right thing":
- Based on what it can perceive and actions it can do
- The "right action":
- One that will cause the agent to be "most successful"
- Performance measure:
- Objective criterion for success of an agent's behavior
- Performance of a vacuum-cleaner agent could be:
- Amount of dirt cleaned up
- Amount of time take
- Amount of electricity consumed
- Amount of noise generated, etc.

- Agent should strive to "do the right thing":
- Based on what it can perceive and actions it can do
- The "right action":
- One that will cause the agent to be "most successful"
- Performance measure:
- Objective criterion for success of an agent's behavior
- Performance of a vacuum-cleaner agent could be:
- Amount of dirt cleaned up
- Amount of time taker
- Amount of electricity consumed
- Amount of noise generated, etc.

- Agent should strive to "do the right thing":
- Based on what it can perceive and actions it can do
- The "right action":
- One that will cause the agent to be "most successful"
- Performance measure:
- Objective criterion for success of an agent's behavior
- Performance of a vacuum-cleaner agent could be:
- Amount of dirt cleaned up
- Amount of time taker
- Amount of electricity consumed
- Amount of noise generated, etc.

- Agent should strive to "do the right thing":
- Based on what it can perceive and actions it can do
- The "right action":
- One that will cause the agent to be "most successful"
- Performance measure:
- Objective criterion for success of an agent's behavior
- Performance of a vacuum-cleaner agent could be:
- Amount of dirt cleaned up
- Amount of time taken
- Amount of electricity consumed
- Amount of noise generated, etc.

Rational Agents?

- There is a:
 - Performance measure
 - Percept sequence
 - Agent's knowledge about the Environment
 - Agent's action repertoire
- Rational Agent: For each percept sequence
 - Acts so as to maximize expected performance measure
 - Given percept sequence and its built-in knowledge

Rational Agents?

- There is a:
 - Performance measure
 - Percept sequence
 - Agent's knowledge about the Environment
 - Agent's action repertoire
- Rational Agent: For each percept sequence
 - Acts so as to maximize expected performance measure
 - Given percept sequence and its built-in knowledge

Rational Agents?

- Rationality is distinct from omniscience
- All-knowing with infinite knowledge
- Agents can perform actions to modify future percepts
- Use this to obtain useful information
- Information gathering, Exploration
- An Autonomous Agent:
- Behavior is determined by its own experience
- With ability to learn and adapt

Rational Agents?

- Rationality is distinct from omniscience
- All-knowing with infinite knowledge
- Agents can perform actions to modify future percepts
- Use this to obtain useful information
- Information gathering, Exploration
- An Autonomous Agent:
- Behavior is determined by its own experience
- With ability to learn and adapt

Rational Agents?

- Rationality is distinct from omniscience
- All-knowing with infinite knowledge
- Agents can perform actions to modify future percepts
- Use this to obtain useful information
- Information gathering, Exploration
- An Autonomous Agent:
- Behavior is determined by its own experience
- With ability to learn and adapt

Rational Agents?

- Rationality is distinct from omniscience
- All-knowing with infinite knowledge
- Agents can perform actions to modify future percepts
- Use this to obtain useful information
- Information gathering, Exploration
- An Autonomous Agent:
- Behavior is determined by its own experience
- With ability to learn and adapt

- PEAS:
- Performance measure, Environment, Actuators, Sensors
- Must first specify the setting for intelligent agent design
- Example: Task of designing an Automated Taxi Driver
 - Performance: Safe, fast, legal, comfort, maximize profits
 - Environment: Roads, other traffic, pedestrians, customers
 - Actuators: Steering wheel, accelerator, brake, signal, horn
 - Sensors:
 - Cameras, sonar, speedometer, GPS, odometer, engine sensors, keyboard

- PEAS:
- Performance measure, Environment, Actuators, Sensors
- Must first specify the setting for intelligent agent design
- Example: Task of designing an Automated Taxi Driver
 - Performance: Safe, fast, legal, comfort, maximize profits
 - Environment: Roads, other traffic, pedestrians, customers
 - Actuators: Steering wheel, accelerator, brake, signal, horn
 - Sensors:
 - Cameras, sonar, speedometer, GPS, odometer, engine sensors, keyboard

- PEAS:
- Performance measure, Environment, Actuators, Sensors
- Must first specify the setting for intelligent agent design
- Example: Task of designing an Automated Taxi Driver
 - Performance: Safe, fast, legal, comfort, maximize profits
 - Environment: Roads, other traffic, pedestrians, customers
 - Actuators: Steering wheel, accelerator, brake, signal, horn
 - Sensors:
 Cameras, sonar, speedometer, GPS, odometer, engine sensors, keyboard

- PEAS: Agent: Medical Diagnosis System
 - Performance: Healthy patient, minimize costs, lawsuits
 - Environment: Patient, hospital, staff
 - Actuators:
 Screen (questions, tests, diagnoses, treatments, referrals)
 - Sensors:
 Keyboard (entry of symptoms, findings, patient's answers)

- PEAS: Agent: Part-picking Robot
 - Performance measure: Percentage of parts in correct bins
 - Environment: Conveyor belt with parts, bins
 - Actuators: Jointed arm and hand
 - Sensors: Camera, joint angle sensors

- PEAS: Agent: Interactive English Tutor
 - Performance measure: Maximize student's score on test
 - Environment: Set of students
 - Actuators: Screen (exercises, suggestions, corrections)
 - Sensors: Keyboard

- Four basic types in order of increasing generality
 - Simple reflex agents
 - Model-based reflex agents
 - Goal-based agents
 - Utility-based (not just that we reach the goal) agents
- We consider (3) and (4) together.

- Four basic types in order of increasing generality
 - Simple reflex agents
 - Model-based reflex agents
 - Goal-based agents
 - Utility-based (not just that we reach the goal) agents
- We consider (3) and (4) together.

Basic (Simple Reflex) Agent

Basic (Simple Reflex) Agent

```
function Agent (percept) returns action
    static: memory
    memory ← UpdateMemory(memory, percept)
    ; Agent stores percept sequences in memory
    ; Only one input percept per invocation
    action ← ChooseBestAction(memory)
    memory ← UpdateMemory(memory, action)
    ; Performance measure: Evaluated externally
return action
```

Issues to be considered:

- Model-based Reflex agents
- Keeping track of the world agents
- Goal-based agents
- Utility-based agents...

Works only if a correct decision can be made on basis of current percept (à la subsumption architecture)

```
function Agent (percept) returns action
     static: rules
     state ← InterpretInput(percept)
     ;Description of world's state from percept
     rule ← RuleMatch(state, rules)
      ;Returns a rule matching state description
     action \leftarrow RuleAction(rule)
return action
```

NEXT: What to do when world is partially observable

```
function Agent (percept) returns action
     static: rules
     state ; World state
     state < InterpretInput(percept)</pre>
     ;Description of world state from percept
     state ← UpdateState(state, percept)
     ; Hard! Presupposes knowledge about how:
        ;(1) World changes independently of agent
        ;(2) Agent's actions effect the world
     rule ← RuleMatch(state, rules)
     ;Returns a rule matching state description
     action \leftarrow RuleAction(rule)
     state ← UpdateState(state, action)
     ;Hard! Record unsensed parts of World
     ;Hard! Record effects of agent's actions
return action
```

Goal and Utility-based Agents

- Actions depends on current state and goal...
 - Often: Goal satisfaction requires sequences of actions
 - What will happen if I do this?
- Credit assignment
- Goals are not enough
- Some goal-achieving sequences are cheaper, faster, etc.
- Utility: states → reals
- Tradeoffs on goal...

Goal and Utility-based Agents

- Actions depends on current state and goal...
 - Often: Goal satisfaction requires sequences of actions
 - What will happen if I do this?
- Credit assignment
- Goals are not enough
- Some goal-achieving sequences are cheaper, faster, etc.
- Utility: states → reals
- Tradeoffs on goal...

function RunEvalEnvironment

```
(state, UpdateFn, agents, termination, PerformFn)
; Have multiple agents; Returns scores
;State, UpdateFn: Simulate Environment;
These are unseen by agents!
; Agent's states: Constructed from percepts
; Agents have no access to PerformFn!
repeat
for each agent in agents do
 Percept[agent] ← GetPercept(agent, state)
for each agent in agents do
Action[agent] ← Program[agent](Percept[agent])
state ← UpdateFn(actions, agents, state)
scores ← PerformFn(scores, agents, state)
until termination
```

- Fully Observable/Accessible vs. Partially Observable:
 - Agent's sensors: Access environment's complete state
- Deterministic (or not) i.e., Stochastic
 - Next state completely determined by current state & action
 - If the environment is deterministic except for the actions of other agents, then the environment is strategic
- Episodic (or not)
 - The agent's experience is divided into atomic "episodes"
 - Each episode consists of the agent perceiving and then performing a single action
 - The choice of action in each episode depends only on the episode itself

- Fully Observable/Accessible vs. Partially Observable:
 - Agent's sensors: Access environment's complete state
- Deterministic (or not) i.e., Stochastic
 - Next state completely determined by current state & action
 - If the environment is deterministic except for the actions of other agents, then the environment is strategic
- Episodic (or not)
 - The agent's experience is divided into atomic "episodes"
 - Each episode consists of the agent perceiving and then performing a single action
 - The choice of action in each episode depends only on the episode itself

- Fully Observable/Accessible vs. Partially Observable:
 - Agent's sensors: Access environment's complete state
- Deterministic (or not) i.e., Stochastic
 - Next state completely determined by current state & action
 - If the environment is deterministic except for the actions of other agents, then the environment is strategic
- Episodic (or not)
 - The agent's experience is divided into atomic "episodes"
 - Each episode consists of the agent perceiving and then performing a single action
 - The choice of action in each episode depends only on the episode itself

- Static (or not)
 - Environment does not change while the agent deliberates
- Discrete (or not)
 - Fixed number of well-defined percepts and actions
- Single agent (vs. Multiagent)
 - An agent operating by itself in an environment
- The Real World
 - Of course: partially observable, stochastic, sequential, dynamic, continuous, multi-agent
- Chess: Accessible, Deterministic, ¬Episodic, Static, Discrete
 Diagnosis: ¬Access., ¬Determin., ¬Episodic, ¬Static, ¬Discrete

- Static (or not)
 - Environment does not change while the agent deliberates
- Discrete (or not)
 - Fixed number of well-defined percepts and actions
- Single agent (vs. Multiagent)
 - An agent operating by itself in an environment
- The Real World
 - Of course: partially observable, stochastic, sequential, dynamic, continuous, multi-agent
- Chess: Accessible, Deterministic, ¬Episodic, Static, Discrete
 Diagnosis: ¬Access., ¬Determin., ¬Episodic, ¬Static, ¬Discrete

- Static (or not)
 - Environment does not change while the agent deliberates
- Discrete (or not)
 - Fixed number of well-defined percepts and actions
- Single agent (vs. Multiagent)
 - An agent operating by itself in an environment
- The Real World
 - Of course: partially observable, stochastic, sequential, dynamic, continuous, multi-agent
- Chess: Accessible, Deterministic, ¬Episodic, Static, Discrete
 Diagnosis: ¬Access., ¬Determin., ¬Episodic, ¬Static, ¬Discrete

- Static (or not)
 - Environment does not change while the agent deliberates
- Discrete (or not)
 - Fixed number of well-defined percepts and actions
- Single agent (vs. Multiagent)
 - An agent operating by itself in an environment
- The Real World
 - Of course: partially observable, stochastic, sequential, dynamic, continuous, multi-agent
- Chess: Accessible, Deterministic, ¬Episodic, Static, Discrete Diagnosis: ¬Access., ¬Determin., ¬Episodic, ¬Static, ¬Discrete

- Static (or not)
 - Environment does not change while the agent deliberates
- Discrete (or not)
 - Fixed number of well-defined percepts and actions
- Single agent (vs. Multiagent)
 - An agent operating by itself in an environment
- The Real World
 - Of course: partially observable, stochastic, sequential, dynamic, continuous, multi-agent
- Chess: Accessible, Deterministic, ¬Episodic, Static, Discrete
 Diagnosis: ¬Access., ¬Determin., ¬Episodic, ¬Static, ¬Discrete

Source of Actions Selected by the Agent

Performance Element

Agent program to select actions

Learning Element

- Improves PE and makes agent's behavior robust
- In initially unknown environments

Problem Generator

- Suggests actions
- May lead to new, informative experiences

Exploitation vs Exploration

Source of Actions Selected by the Agent

