
Solving Problems: Intelligent Search

 Instructor: B. John Oommen

Chancellor’s Professor

Life Fellow: IEEE; Fellow: IAPR

School of Computer Science, Carleton University, Canada

The primary source of these notes are the slides of Professor Hwee Tou Ng

from Singapore. I sincerely thank him for this.

Heuristic Search

• Problem with DFS and BFS: No way to guide the search

• Solution can be anywhere in tree.

• In the worst case all possible states will be traversed

• One “solution” to this problem
– Probe the search space

– Where is the final state likely to be

• This of course will be problem specific

• A function is usually created that evaluates:
– How good the current solution is

– This function is used to help guide the search process

• This guided search called a Heuristic Search

A Heuristic

• Derived from the Greek: heuriskein: “to find”; “to discover”

• Has been used (and is sometimes still used) to mean:
– “A process that may solve a given problem, but offers no guarantees of

doing so” Newall, Shaw, & Simon 1963

• Heuristics can also be thought of as a “Rule of Thumb”

• Can refer to any technique that improves average-case
but not necessarily worst-case performance

• Here: A function that provides an estimate of solution cost

Advantage of Heuristics

Advantage of Heuristics:
Reduced State Space

Performance of Heuristics

• Performance of several heuristics…

Possible Heuristics

• Count the tiles out of place:
– State with fewest tiles out of place is

closer to the desired goal

• Distance Summation:
– Sum all the distance by which the tiles

are out of place

– State with the shortest distance is
closer to the desired goal

• Count reversal Tiles:
– If two tiles are next to each other, and

the goal requires their position to be
swapped. The heuristic takes this into
account by evaluating the expression
(2 * number of direct tiles reversal)

Best-first Search

• Idea: use an evaluation function f(n) for each node
– Estimate of “desirability”

– Expand most desirable unexpanded node

• Implementation:

 Order the nodes in fringe in decreasing order of desirability

• Special cases:
– Greedy best-first search

– A* search

Best-first Search

• Combine BFS and DFS using a heuristic function

• Expand the branch that has the best evaluation
under the heuristic function

• Similar to hill climbing (move in the best direction)

• But can go back to “discarded” branches

Best-first Search Algorithm

• Initialize OPEN to initial state, CLOSED to Empty list

• Until a Goal is found or no nodes left in Open do:
– Pick the best node in OPEN

– Generate its successors, place node in CLOSED

– For each successor do:

 If not previously generated (not found in OPEN or CLOSED)
• Evaluate

• Add to OPEN

OPEN: Generated nodes who’s children have not been evaluated yet

» Implemented as a priority queue (heap structure)

CLOSED: Nodes that have been examined

» Used to see if a node has been visited if searching a graph instead of a tree

» Same as in DFS and BFS

E
x
a

m
p
le

 o
f
B

e
s
tF

S

A

8

A

B

3

C

5

D

1

A

B

3

C

5

D

F

6

E

4

G

5

D

C
lo

se
d

A

B

C

5

D

F

6

E

4

J

1

I 2

G

5

D

C
lo

se
d

A

B

C

5

D

F

6

E

S
te

p
 1

S

te
p

 2

S
te

p
 3

S
te

p
 4

S

te
p

 5

Greedy Best-first Search

• Evaluation function f(n) = h(n) (heuristic)

• An estimate of cost from n to goal

• hSLD(n) = straight-line distance from n to Bucharest

• Greedy Best-first Search expands the node that
appears to be closest to goal

Romania: Step Costs in Km

Example: Greedy Best-first Search

Example: Greedy Best-first Search

Example: Greedy Best-first Search

Example: Greedy Best-first Search

Properties: Greedy Best-first Search

• Complete?
– No – can get stuck in loops

– Iasi  Neamt  Iasi  Neamt 

• Time?
– O(bm)

– But a good heuristic can a give dramatic improvement

• Space?
– O(bm)

– Keeps all nodes in memory

• Optimal?
– No

A* Search

• A modification of the Best-first Search

• Used when searching for the Optimal path

• Idea: Avoid expanding paths that are “expensive”

• The heuristic function f(S) is broken into two parts:

• Evaluation function f(n) = g(n) + h(n)
– g(n) = Cost so far to reach n

– h(n) = Estimated cost from n to goal

– f(n) = Estimated total cost of path through n to goal

How A* Works

How A* Works

A* Algorithm

• Initialize OPEN to initial state

• Until a Goal is found or no nodes left in OPEN do:

– Pick the best node in OPEN

– Generate its successors (recording the successors in a list);

– Place in CLOSED

– For each successor do:

 If not previously generated (not found in OPEN or CLOSED)

• Evaluate, add to OPEN , and record its parent

 If previously generated (found in OPEN or CLOSED), and if the new path is
better then the previous one

• Change parent pointer that was recorded in the found node

 If parent changed

• Update the cost of getting to this node

• Update the cost of getting to the children

– Do this by recursively “regenerating” the successors using the list of
successors that had been recorded in the found node

• Make sure the priority queue is reordered accordingly

Properties of A*

• Becomes simple Best-first Search if g(S) = 0 for every S

• When a child state is formed
– g(S) can be incremented by 1

– Or be weighted based on the production system operator generated the state

• Is Breadth-first Search if g += 1 per generation and h=0 always

Properties of A*

• If h is the perfect estimator of the distance to the Goal (say, H)
– A* will immediately find and traverse the optimal path to the solution

– Will need NO backtracking

• If h never overestimates H
– A* will find an optimal path to the solution (if it exists)

– Problem lies in finding such an h

h Under/Over Estimates H

Goal is G

h Underestimates H h Overestimates H

A

B (3+1) C (4+1)

F (1+3)

E (2+2)
Expand Next

G

D (5+1)

G

..
.

A

B (5+1) D (7+1) C (6+1)

F (3+3)

E (4+2) G

G

Returned, but longer path

Importance of Heuristic Function

• If we have the exact Heuristic Function H
– The search gets solved optimally

• Exact H is usually very hard to find
– In many cases it would be a solution to an NP problem in polytime

– Which is probably not possible to compute in less time than it would take to
do the exponential sized search

• Next best: Guarantee h underestimates distance to the Soln.
– A minimum path to the Goal is then guaranteed

Heuristic Function vs. Search Time

• The better the heuristic, the less searching
– Improves the average time complexity

• However, to compute such a heuristic
– Can figure out a good algorithm

– Usually costs computation cycles

– This could be used to process more nodes in the search

– Trade-off between complex heuristics vs. more search done

Example: A* Search

Example: A* Search

Example: A* Search

Example: A* Search

Example: A* Search

Example: A* Search

Other Example: A* Search

• Please see the other Powerpoint in the folder...

Admissible Heuristics

• A heuristic h(n) is Admissible if for every node n, h(n) ≤ h*(n),
where h*(n) is the true cost to reach the goal state from n.

• An admissible heuristic never overestimates the cost to reach the
goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Proof: Optimality of A*

• Suppose some suboptimal goal G2 has been generated and is in the fringe.

• Let n be an unexpanded node in the fringe such that n is on a shortest path to an
optimal goal G.

• f(G2) = g(G2) Since h(G2) = 0

• g(G2) > g(G) Since G2 is suboptimal (2)

• f(G) = g(G) Since h(G) = 0 (3)

• f(G2) = g(G2) > g(G) (from (2)) = f(G) (from (3))

• f(G2) > f(G) From above

Proof: Optimality of A*

• Suppose some suboptimal goal G2 has been generated and is in the fringe.

• Let n be an unexpanded node in the fringe such that n is on a shortest path to an
optimal goal G.

• f(G2) > f(G) From above

• h(n) ≤ h*(n) Since h is admissible

• g(n) + h(n) ≤ g(n) + h*(n)

• f(n) ≤ f(G)

Hence f(G2) > f(n). Thus A* will never select G2 for expansion

Consistent Heuristics

• A heuristic is consistent if for every node n, every successor n' of n
generated by any action a,

 h(n) ≤ c(n,a,n') + h(n') (4)

• If h is consistent, we have

 f(n') = g(n') + h(n')

 = g(n) + c(n,a,n') + h(n') (By (4))

 ≥ g(n) + h(n)

 = f(n)

• i.e., f(n) is non-decreasing along any path.

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal.

• Essentially since: At the very end – h(G) = 0.

Optimality of A*

• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes

• Contour i has all nodes with f=fi, where fi < fi+1

Properties of A*

• Complete?
– Yes (unless there are infinitely many nodes with f ≤ f(G))

• Time?
– Exponential

• Space?
– Keeps all nodes in memory

• Optimal?
– Yes

Admissible Heuristics

The 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., No. of squares from desired location of each tile)

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)

• then h2 dominates h1

• h2 is better for search

• Typical search costs (average number of nodes expanded):

• d=12 IDS = 3,644,035 nodes
 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

• d=24 IDS = too many nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

Relaxed Problems

• A problem with fewer restrictions on the actions is called a
relaxed problem

• The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere, then h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any
adjacent square, then h2(n) gives the shortest solution

Beam Search

• Same as BestFS and A* with one difference

• Instead of keeping the list OPEN unbounded in
size, Beam Search fixes the size of OPEN

• OPEN only contains the best K evaluated nodes

Beam Search

• If new node considered is not better then any in
OPEN, and OPEN is full, new node is not added

• If new node is to be inserted in the middle of the
priority queue, and OPEN is full, drop the node at
the end of OPEN (the one with the least priority)

Local Beam Search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k states
are generated

• If any one is a goal state, stop; else select the k
best successors from the complete list & repeat.

Local Search Algorithms

• In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution

• State space = set of “complete” configurations

• Find configuration satisfying constraints, e.g., n-queens

• In such cases, we can use local search algorithms

• keep a single “current” state, try to improve it

Hill Climbing Search

• “Like climbing Everest in thick fog with amnesia”

Example: n-queens

• Put n queens on an n × n board

• No two queens on the same row, column, or diagonal

Example: 8-queens

• h = No. of pairs of queens that are attacking each other, either directly or indirectly

• h = 17 for the above state

Hill-climbing Search: 8-queens problem

• A local minimum with h = 1

Hill Climbing Search

Simple-Hill-Climber (S)

• Evaluate S; If Goal state return and quit

• Loop until a solution is found or no neighbors left

– Look at next neighbor NN

– Evaluate NN

 If NN is Goal return and quit

 If NN is better than S, S := NN

Reset neighbors

Hill Climbing Search

Steepest-Ascent-HC (S)

• Evaluate S; If Goal state return and quit

• SUCC := S

• Loop until a solution is found or no neighbors left

– For all neighbors (NN) of S

 Evaluate NN

 If NN is Goal then return NN and quit

 If NN is better than SUCC then SUCC := NN

– If SUCC is better than S then

 S := SUCC

Reset neighbors

Hill Climbing Continued

Stochastic-Hill-Climber (S)

• Evaluate S; If Goal state return and quit

• Loop until a solution is found or no neighbors left
– Look at some random neighbor RN

– Evaluate RN

 If RN is Goal return and quit

 If RN is better than S
• S := RN

• Reset neighbors

Hill Climbing Search

Problem: Local maxima or plateau…

Problems with Hill Climbing

• Hill Climbing will get stuck at local maxima in the space

• Can get stuck on a “plateau”

Solutions

• Backtrack to earlier node and force it to go in a new direction

• Take a big jump to somewhere else in search space

• Simulated Annealing (Will study this next)

• Genetic Algorithms

Simulated Annealing Search

• Simulate the annealing process of creating metal alloys

• Start off hot, and cool down slowly which allows the various
metals to crystallize into a global uniform structure

• If cooled too fast the metals crystallize in pockets

• If cooled too slowly, a uniform crystallization but wastes time

Simulated Annealing Search

• Use this idea to try to find global minimum

• Now finding minimum instead of maximum -- but it’s the same

• Wander from the hill-climbing while system still hot

• Reduce to hill climbing as system cools

Properties: Simulated Annealing

• One can prove:
– If T decreases slowly enough, then simulated annealing search

will find a global optimum with probability approaching unity

• Widely used in VLSI layout, airline scheduling, etc

Details: Simulated Annealing

• The probability to move to a higher energy state in physics is

 where k is the Boltzman constant

• Similarly, in SA (when finding the minimum), the probability to move to a

state with a higher (worse) heuristic is:

 where

 E = (value of current state) - (value of new state)

 T(t) is the temperature schedule (a function of time t)
– Temperature monotonically decreases with time,

– Eventually T reaches 0 when the system becomes simple “hill descending”

p 
1

e
E kT

p 
1

e
E T (t)

SA Details When Maximizing

• The probability to move to a state with a lower (worse) heuristic
function evaluation in SA is

p = e E/T

 where

 E = (value of new state) - (value of current state)

 (The negation of the E used when minimizing)

 T(t) is the temperature schedule (a function of time t)
– Temperature monotonically decreases with time

– Eventually T reaches 0 when the system becomes simple “hill climbing”

Simulated Annealing Algorithm

Simulated-Annealing (problem, schedule) From Russell and Norvig

 Current := Initial-State(Problem)

 for t := 1 to  do

 T := schedule(t)

 If T = 0 then return Current

 Next := a randomly selected successor of Current

 E := Value(Next) - Value(Current)

 If E > 0 then

 “Always go to a better solution”

 Current := Next

 Else

 “Leave a better solution for a worse one with prob. e E/T ”

 Current := Next only with probability e E/T

SA: Meta Heuristics

• If the solution is better:
– Always move to it

• If the solution is worse but the slope up is shallow:
– Try it out

• If the solution is worse but the slope is steep:
– Don’t try it out as readily (with an exponentially decreasing probability)

• As time goes on, don’t try worse solutions as frequently
– Again with an exponentially decreasing probability

SA Effects

• At the beginning of the process (when T(t) is large)
– The probability of moving to poorer states, or moving along a plateau is large.

– So the space can be well searched

– Local minimums can be passed over

– Ignore steep ascents

 This implies that you are in a deep valley, which is assumed to be good

• As time increases
– The search gets trapped in one valley and gets stuck as T(t) becomes small

– The probability of getting out of the Valley is too small.

• At this time
– SA becomes “hill descending”

– Descends to the bottom of that valley - hopefully the global minimum

Genetic Algorithms

• A successor state is generated by combining two parent states

• Start with k randomly generated states (population)

• A state is represented as a string over a finite alphabet (often a
string of 0s and 1s)

• Evaluation function (fitness function). Higher values for better
states.

• Produce the next generation of states by selection, crossover, and
mutation

Genetic Algorithms

• Fitness function: Number of non-attacking pairs of queens

 (min = 0, max = 8 × 7/2 = 28)

• 24/(24+23+20+11) = 31%

• 23/(24+23+20+11) = 29% etc

Genetic Algorithms

OR Graphs vs. AND-OR Graphs

• In the previous search techniques, Solution can be
found down any path independent of any other path

• This is called an OR graph

• However, there may be sub-goals that must all be
solved for a solution to be found

– Each sub-goal is its own sub-tree

– All sub-trees must have its own end state found if the path is to be
considered satisfied

• This is called an AND-OR graph

Example of an AND-OR Graph

• Getting software to accomplish a task

Buy Software

Obtain Software

Get Money

Pirate Software Get Disk

Write Software

Compile

Debug

Problem Reduction Algorithm

• Initialize the graph to the starting node

• Until the starting node is labeled SOLVED or its cost > FUTILITY do:

– Start at initial node and traverse best path

 Accumulate set of nodes on path not expanded or labeled SOLVED

– Pick an unexpanded node and expand

 If no successors, node cost = FUTILITY

 Add successors to graph after computing the heuristic f for each

 If f = 0 for any node mark node as SOLVED

– Propagate change back through path

 If child is an OR child and is SOLVED mark parent as SOLVED

 If AND children are all solved, mark parent as SOLVED

Change the estimate of f as determined by children

 As we back up the tree, change current best path associated with
each node (on the original best path) if updated f values warrant it

Example of Problem Reduction (AO*)

A (5)

A (4,0)

B (3) D (10)

E (4) F (4)

C (4)

(9)
(11)

(10)

A

B (3) D (5) C (4)

(9)
(6)

(6)

When you calculate costs, remember to use the cost PLUS the depth

Example of Problem Reduction (AO*)

A (4,0)

H (7) G (5)

B (6) D (10)

E (4) F (4)

C (4)

(12)
(11)

(10)

Interacting Sub-goals

A

D

C E
5 2

Branch and Bound

• If we know that current path (branch) is already
worse than some other known path:

– Stop Expanding It (Bound).

• Have already encountered Branch and Bound:
– A* stops expanding a branch if its heuristic value h becomes

larger than some other branch

Constraint Satisfaction Problems
and Branch and Bound

• Problems where there are natural constraints on the
system (fixed resources, impossibility conditions, etc.)

• Constraints: Handled by Branch and Bound technique
– Branch out in your normal search pattern

– Stop expanding a branch if it fails a constraint (backtracking may
occur when that happens)

• Trivial example: Missionaries and Cannibals
– Do not continue to search along a branch if the Cannibals have just

eaten some (or all) of the Missionaries

