
1 23

Evolving Systems
An Interdisciplinary Journal for
Advanced Science and Technology

ISSN 1868-6478

Evolving Systems
DOI 10.1007/s12530-020-09325-6

On solving single elevator-like problems
using a learning automata-based paradigm

Omar Ghaleb & B. John Oommen

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag GmbH Germany, part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Vol.:(0123456789)1 3

Evolving Systems
https://doi.org/10.1007/s12530-020-09325-6

ORIGINAL PAPER

On solving single elevator‑like problems using a learning
automata‑based paradigm

Omar Ghaleb1 · B. John Oommen1,2

Received: 24 September 2019 / Accepted: 16 January 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
This paper concentrates on a host of problems with characteristics similar to those that are related to moving elevators within
a building. These are referred to as Elevator-like problems (ELPs), and their common phenomena will be expanded on in
the body of the paper. We shall resolve ELPs using a subfield of AI, namely the field of learning automata (LA). Rather
than working with the well-established mathematical formulations of the field, our intention is to use these tools to tackle
ELPs, and in particular, those that deal with single “elevators” moving between “floors”. ELPs have not been tackled before
using AI. In a simplified domain, the ELP involves the problem of optimizing the scheduling of elevators. In particular, we
are concerned with determining the elevators’ optimal “parking” location. In our case, the objective is to find the optimal
parking floors for the single elevator scenario, so as to minimize the passengers’ average waiting time (AWT). Apart from
proposing benchmark solutions, we have provided two different novel LA-based solutions for the single-elevator scenario
as the multi-elevator setting is more complicated. The first solution is based on the well-known L

RI
 scheme, and the second

solution incorporates the Pursuit concept to improve the performance and the convergence speed of the first solution, lead-
ing to the PL

RI
 scheme. The simulation results presented demonstrate that our solutions performed better than those used in

modern-day elevators, and provided results that are near-optimal, yielding a performance increase of up to 90%. The solu-
tions presented for real elevators are directly applicable for the entire family of ELPs.

Keywords  Learning automata (LA) · Learning systems · Single elevator problem (SEP) · Elevator-like problems (ELPs) ·
Parking problem

1  Introduction

Right from its infancy, the goal of the field of artificial intel-
ligence (AI) has been to make computers respond intelli-
gently in everyday and challenging situations. Turing, in his
Turing test, suggested that a machine could be considered to
possess AI if a human observer would not have been able to
distinguish its behaviour from the behaviour of a real human
being. The goal, although lofty, has been achieved to a phe-
nomenal degree. AI-based computer programs have chal-
lenged and beaten the best players in many games, including
Chess and Go.

It is staggering to record the areas in which AI has been
used. Machine learning, pattern recognition, medical diag-
nosis and voice-operated systems are commonplace in
today’s world. AI has been used in practically every sin-
gle application domain. The field of AI has been a topic of
interest for the better part of a century, where the goal is to
have computers mimic human behaviour. Researchers have

This paper is a significant extension to a very abridged conference
paper (Ghaleb and Oommen 2019), which was a brief introduction
to the problem and contained some initial solutions (Ghaleb 2018).
The work of the second author was partially supported by NSERC,
the Natural Sciences and Engineering Council of Canada. We are
very grateful for the feedback from the Anonymous Referees of
the original submission. Their input significantly improved the
quality of this final version.

The concepts of floors and parking for real elevators are but
simplified versions of their abstract representations in ELPs.

 *	 B. John Oommen
	 oommen@scs.carleton.ca

	 Omar Ghaleb
	 omar.ghaleb@carleton.ca

1	 School of Computer Science, Carleton University,
Ottawa K1S 5B6, Canada

2	 University of Agder, Grimstad, Norway

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-020-09325-6&domain=pdf

	 Evolving Systems

1 3

attempted to incorporate AI in different problem domains,
such as autonomous driving, playing games, diagnosis and
security. They have also worked extensively on different sub-
fields of AI such as machine learning, pattern recognition
and voice operated-systems.

This paper’s goal and intent This paper considers a
field in which AI has not been applied much. Consider a
tennis player who is moving within his side of the court.
After he hits the ball, the question that he encounters is to
know where he should place himself so as to best counter
his opponent’s response. This can be modelled as a parking
problem, i.e., where should the player “park” himself so that
when his opponent hits the ball, it is in the vicinity of where
he has parked. We could refer to problems of this type as
“elevator-like” problems (ELPs), because they are akin to
parking problems encountered in real-life elevator systems.
They are, in fact, in a unidimensional domain, related to the
problem of where an elevator within a building should be
parked. In other words, if there is a building with n floors
and if the elevator car is requested at floor i, where should
the car move to after the passenger has been dropped off? Of
course, the answer to this question depends on the criterion
function, but it is expedient to work with the understanding
that the car should be parked near to the next passenger call.
The same analogy can be seen if we extend the problem
domain to know where police or emergency vehicles should
be parked so as to be available, in the shortest possible time,
for the next call.

ELPs and non-transportation problems Although the
above problems are, in general, transportation problems,
their common facet can also be extended to other domains.
For example, one could consider the problem of where the
read/write disk head in a memory bank should be placed so
that it can access data more expeditiously. Similarly, one
could consider the problem of where security guards, who
move on a rotational basis, should be placed so that the facil-
ity is maximally secured. Indeed, our problem model can
be extended to consider improving underwater communica-
tion systems by determining where the underwater sensors
should be located.

Complexity of stochastic ELPs In this paper, we refer to
all of these problems as ELPs, and this is the primary focus
of the research. However, to render the problem to be non-
trivial, we assume that “the world” in which we are operat-
ing is stochastic and that the underlying distributions are
unknown. For example, in the case of the tennis player, we
assume that there is a distribution for the place where the
opponent will place his counter-shot, but that this distribu-
tion is unknown.

Single “elevator” ELPs Our goal is to discuss, analyze
and investigate the single elevator problem (SEP).1 We shall
initially explain the solutions by which previous researchers
have tackled it. In the SEP, we have a building with n floors
and a single elevator, and where we are to design a policy
for the elevator so as to save energy, reduce the travel time or
the waiting time for passengers. The elevator policy should
decide how the elevator should operate so as to achieve its
goal. For example, one possible policy could require that
the elevator picks the best route, while another could be to
serve the longest queue first or to decide where the elevator
should wait for the next call.

The learning paradigm Our goal is to solve the SEP using
AI techniques. Unlike the schemes reported in the literature,
which we will survey presently, we shall resort to the field of
learning automata (LA). The principle that we invoke is very
simple. Let us say that the elevator is asked to go from floor
‘i’ to another, say ’j’. Once it has moved to the second floor,
we invoke an algorithm for it to decide as to where it would
park before the next passenger call. Thus, if it is stopped at
floor ‘j’, we shall opt to wait for the next call at floor, say, ‘k’.
Our task is to choose the floor ‘k’ to be as close as possible
to the floor where the next call originates, which, of course,
is unknown. If ‘k’ is “close” to the location of the next call,
we Reward the LA, and it is Penalized otherwise. In this
way, the next passenger has a minimal waiting time. The
whole concept of how the reward and penalties are modeled,
received and processed so as to update the learning mecha-
nism is, essentially, what we shall propose and analyze.

1.1 � Survey of the field

As we shall see, the literature does not record several solu-
tions for the SEP. The reason for this is that most papers
deal some simple straightforward criteria for both the SEP
and the MEP.

Two notable contributions for the SEP were by Tanaka
et al. (2005a, b). In their papers, they studied the operation
problem of a single-car elevator with so-called “destination
hall call registration”. “Destination hall call registration”
is a system that is responsible for passengers registering
their destination floors at the hall before boarding the eleva-
tor. This is opposed to regular or “traditional” elevators,
where passengers can only pick the direction of their trip
before boarding, and thereafter specify the destination floor
after boarding. In the first part of their study (Tanaka et al.
2005a), the authors were trying to answer two questions,
namely: (a) “Can (single) car operations be improved with
destination hall call registration?”, and (b) “How can it be

1  The SEP is a subclass of the multi-elevator problem (MEP) in
which we have to deal with multiple elevators.

Author's personal copy

Evolving Systems	

1 3

realized?”. They were able to formulate the operation prob-
lem as a Dynamic Optimization Problem (DOP) such that
an objective function, which is the weighted average waiting
time for passengers, is minimized. This set the stage for the
second question. For the first question, they were able to
show, by simulation, that the DOP substantially improved
the capability of the transportation when compared to the
conventional “selective collective” operation.

In the second part (Tanaka et al. 2005b), the authors intro-
duced a branch-and-bound algorithm to solve the formula-
tion of the DOP problem, which was the exact formulation
proposed for the work in Tanaka et al. (2005a). In this case,
the lower bound calculations for the subproblems, that were
generated in the course of the branch-and-bound algorithm,
came from decomposing the problem into three subprob-
lems, i.e., the passenger loading and unloading, car stops
and lastly the car floor-to-floor travel. They then applied the
Lagrangian relaxation method to solve the overall problem.
Unfortunately, the authors observed that their algorithm was
not fast enough for real-life situations. To improve it, they
had to take into consideration the constraints of the eleva-
tor’s capacity.

After their previous studies in Tanaka et al. (2005a, b),
the authors conducted a study in Tanaka et al. (2004) where
they tried to examine how one could improve the efficiency
of a single elevator system with “destination hall call” con-
sidering the objective functions that had to be dynamically
optimized. In this paper, the authors applied a simulated
annealing-based method, and from their results they showed
that the weighted average of two different objective func-
tions, such as the weighted average service time and the
maximum, yielded a better performance than using only a
single objective function. Another point that they observed
was that one had to choose the weights of the objective func-
tions carefully because this choice significantly affected the
results of the experiments. Moreover, these weights changed
depending on the elevator’s specific characteristics.

The authors of Sun et al. (2006) addressed the goal of
estimating the optimal values for the upper and lower bounds
for the elevator scheduling problem, in which they assumed
the availability of all the information about the passengers.
Because of the large numbers of decision variables that had
to be taken into consideration, one could not compute the
exact optimal performance, and they, thus, provided its esti-
mate. To achieve this, they formulated the problem in two
parts, a high level and a low level component. The high level
component was a passenger-to-car assignment, and the low
level component was the passenger-to-trip assignment. In
both, they defined a “trip” as the start of the elevator’s move-
ment in a single direction until the elevator reversed to go to
the other direction. This was used for the formulation of the
low-level component. The authors obtained the upper bound
by finding a reasonable solution to the problem. They then

obtained the lower bound by defining a lower bound for a
newly constructed problem using Lagrangian Relaxation.
This method permitted the approximation of a constrained
optimization problem by a more straightforward problem.
Moreover, the solution to the simpler problem provided an
approximation to the original problem. The results that the
authors obtained were both efficient and scalable.

A subsequent work was done by Molina and Leguizam
(2007), where they designed an algorithm that is based on
Ant Colony Optimization (ACO) for solving the SEP. The
ACO model involved a partially-connected construction
graph used by the artificial ants to construct the solutions
to the SEP. It provided a sequence of visits to the requested
floors to minimize the average waiting time (AWT) for the
passengers. They introduced an objective function that spec-
ified how good the proposed solution was, when the problem
was formulated as a combinatorial optimization problem.
Using the latter, the authors were able to minimize the AWT
for passengers by invoking straightforward well-known ACO
methods. In their experiments, they focused on finding the
best parameters for their algorithm, which they referred to
as the ACS-elevator to obtain the best sequence of visits
for the elevator. These parameters were the initial positions
of the elevator, the maximum capacity of the elevator, the
number of floors in the building, the length of the sequence
of visits or the solution, the maximum number of algorithm
iterations, etc.

Another work was presented by Xu and Feng (2016), who
modelled the single elevator scheduling problem as a mixed
integer linear program (MILP). They focused on using this
model to improve the service time for passengers. Based on
a prototype model obtained from the industry for the dynam-
ics of a moving elevator, they linearized the nonlinear travel
activities for the problem. They also introduced many con-
straints to accelerate the computation for solving the MILP.
They tested their model under different circumstances and
scenarios. After introducing their constraints, they observed
that the problem converged in a radically short time. They
conjectured that their model could be extended and used as
a benchmark because of its simple implementation and its
speed.

As mentioned earlier, at the beginning of this section,
the above survey reports the only research results avail-
able, to the best of our knowledge, that is relevant to the
SEP. Researchers were more interested in tackling the more
complex scenario that deals with multiple elevators in the
building, and this has been referred to as the Multi-Eleva-
tor Problem (MEP). Since this is not the primary focus of
this paper, we briefly cite a few important references. From
the perspective of the MEP, many authors have used dif-
ferent machine learning models and techniques to tackle
that problem. The authors of Barto and Crites (1995) pro-
posed a Reinforcement Learning (RL) technique to solve the

Author's personal copy

	 Evolving Systems

1 3

dispatching problem. In Cheo et al. (1999) proposed a new
approach for the control system for a group of elevators. In
Tartan et al. (2014), the authors designed new GA-based
algorithms to optimize the dispatching of group elevator
systems to reduce the car trip time, waiting time, travel time
and the journey time for the passengers. Further, the authors
of Zheng et al. (2013) presented an algorithm based on RL,
and specifically on Q-learning, to find the optimal dispatch-
ing policy to optimize the average waiting time and average
riding time for the passengers in a group elevator system.

These publications are but samples of the survey done on
the MEP,2 and a more detailed survey of the papers related to
the MEP will be presented in a forthcoming paper that spe-
cifically deals with that problem. In the interest of space, this
survey on the MEP is necessarily brief as it is not directly
pertinent to the SEP.

1.2 � Learning automata (LA)

We now concentrate on the field that we shall work in,
namely, that of LA. The concept of LA was first introduced
in the early 1960’s in the pioneering research done by Tsetlin
(1961). He proposed a computational learning scheme that
can be used to learn from a random (or stochastic) Envi-
ronment which offers a set of actions for the automaton to
choose from. The automaton’s goal is to pick the best action
that maximizes the reward received from the Environment
and minimizes the penalty. The evaluation is based on a
function that permits the Environment to stochastically
measure how good an action is, and to thereafter send an
appropriate feedback signal to the LA.

After the introduction of LA, different structures of LA,
such as the deterministic and the stochastic schemes, were
introduced and studied by the famous researchers Tsetlin,
Krinsky and Krylov in Tsetlin (1961) and Varshavskii in
Varshavskii and Vorontsova (1963).

The field of LA, like many of the Reinforcement Learning
techniques, has been used in a variety of (mainly optimiza-
tion) problems, and in many AI applications. It has been
used in neural network adaptation (Meybodi and Beigy
2002), solving communication and networking problems
(Misra and Oommen 2004; Obaidat et al. 2002; Oom-
men and Roberts 2000) and (Papadimitriou and Pomport-
sis 2000), in distributed scheduling problems (Seredyński
1998), and in the training of Hidden Markov Models (Kabu-
dian et al. 2004).

In this section, we will cover the relevant background
required to help the reader understand the fundamental con-
cepts for our proposed work.3

In Fig. 1, we have the general stochastic learning model
associated with LA. The components of the model are the
Random Environment, the Automaton, the Feedback received
from the Environment and the Actions chosen by the LA.

1.3 � Environment

We first define the stochastic Random Environment that the
automaton interacts with. Initially, the automaton picks an
action from the set of actions available to it and communi-
cates it to the environment. The Environment evaluates that
action according to a random function, and sends back, to
the automat, a feedback signal, depending on whether that
action resulted in a Reward or a Penalty.

The environment can be mathematically described as a
triple: � = {�, c, �} , where:

•	 � : is the set of actions {�1, �2, ..., �r}
•	 � : is the set feedbacks, where, typically, � = {0, 1} , and

is transmitted from � to the LA
•	 c : is the set of penalty probabilities associated with the

Environment, and it corresponds to the set of actions �
where:

The environment, � , can be classified as being one of two
types. � is stationary when the penalty probabilities are con-
stant. On the other hand, it is non-stationary if it has penalty
probabilities that change with time.

ci = Pr
[
�(n) = 1|�(n) = �i

]
(i = 1, 2, ..., r).

Fig. 1   The automaton-environment feedback loop

2  We are grateful to the Anonymous Referee who requested and sug-
gested this.

3  We will not go through irrelevant details and/or the proofs of the
LA-related claims. This overview section can be abridged if the Ref-
erees request it.

Author's personal copy

Evolving Systems	

1 3

1.4 � Automaton

Narendra and Thathachar (2012), the pioneers of the field,
define the LA as a quintuple: {Φ, �, �,F(⋅, ⋅),G(⋅)} where:

•	 Φ = {�1,�2, ...,�s} represents the set of states. �(n) is the
current state at time n.

•	 � = {�1, �2, ..., �r} represents the set of actions that the
automaton can pick from. �(n) is the action selected by the
automaton at time n.

•	 � = {0, 1} represents the set of possible feedback signals
transmitted by � . � = 0 is the case when � rewards the
taken action, and � = 1 is the case when � penalizes it.

•	 F represents the transition function for the LA from the
current state �(n) to the next state �(n + 1) . Formally,
�(n + 1) = F(�(n), �(n))

•	 G represents the output function of the automaton,
where G can be stochastic or deterministic. This output
specifies the selection of the action by the LA. Formally,
�(n) = G(�(n)).

The LA achieves its learning process as an iterative opera-
tion that is based on � and the interaction between them. This
process consists of two main steps which are, policy evalua-
tion, which is how � evaluates the selected action. Moreover,
the second step involves policy improvement, where the LA
improves the probability of selecting an action that would
maximize the reward received from �.

We can formalize the LA in terms of the following equa-
tion ∀ n:

where pi(n) is the probability of the LA choosing an action �i
at time n, and where the collective probability vector, P(n),
has all the action probabilities in the corresponding indices
of that vector.

The performance of the LA is measured by the average
penalty, M(n), for the vector P(n), specified by:

Consider the pure-chance automaton, which does not have
any preference or biases for any actions. In this automaton,
the average penalty M0 is given:

(1)

pi(n) = Pr[�(n) = �i] ∶ (i = 1, ..., r), and

r∑

i=1

pi(n) = 1,

(2)

M(n) = E[�(n)|P(n)] = Pr [�(n) = 1|P(n)]

=

r∑

i=1

cipi(n).

(3)M0 =
1

r

r∑

i=1

ci.

This pure-chance automaton is used to compare the per-
formances of different LA schemes. For the LA to be a
well-performing LA, it has to be at least better than the
pure-chance LA. Hence, we compare E[M(n)] with M0 and
determine whether the expected average penalty is better
than the pure-chance machine or not.

We can characterize the LA by four possibilities having
four different cases for E[M(n)] . If the LA performs bet-
ter than the pure-chance machine, we say that we have an
Expedient LA, where:

Secondly, we may have an optimal LA when:

Thirdly, an LA is said to be �-optimal whenever:

where 𝜖 > 0 is an arbitrarily small user-defined value.
Finally, we say that the LA is Absolutely Expedient when:

1.5 � Estimator and pursuit algorithms

The concept of Estimator Algorithms was introduced by
Thathachar and Sastry in Thathachar and Sastry (1984,
1985) when they realized that the family of absolutely
expedient algorithms would be absorbing, and that they
possessed a small probability of not converging to the
best action. Estimator algorithms were initially based on
maximum likelihood (ML) estimates (and later on Bayes-
ian Estimates), where they also used the estimates of the
reward probabilities to update the actions’ probabilities.
This concept was achieved by keeping track of the number
of rewards received by the selected actions and by pursu-
ing the ones with the superior estimates. By doing this, the
LA converged faster to the actions that possessed the higher
reward estimates.

The original Pursuit algorithms are the simplest ver-
sions of those using the Estimator paradigm introduced by
Thathachar and Sastry in Thathachar and Sastry (1986).
These algorithms are based on the pursuit strategy where
the idea is to have the algorithm pursuing the best-known
action based on the corresponding reward estimates. The
Pursuit algorithms were proven to be �-optimal. After the
initial family of Pursuit algorithms, the concept of design-
ing discretized Pursuit LA was introduced by Oommen and
Lanctot in Oommen and Lanctot (1990). These LA were also
proven to be �-optimal. The discretized versions of LA were
shown to converge faster than their continuous counterparts.

(4)lim
n→∞

E[M(n)] < M0.

(5)lim
n→∞

E[M(n)] = cl, where cl = min
i
{ ci }.

(6)lim
n→∞

E[M(n)] ≤ cl + �,

(7)E[M(n + 1)|P(n)] < M(n).

Author's personal copy

	 Evolving Systems

1 3

1.6 � Contributions of this paper

The novel contributions of this paper are:

•	 We have surveyed a subfield of AI, namely the field of
learning automata (LA), and have concluded that it has
not been used previously to solve the single elevator
problem.

•	 We were able to identify two different models of compu-
tations for the elevator problem, where the first requires
the calling distribution to be known a priori, and the
second does not need such information.

•	 We were able to model the elevator problem in such a
way that it can be solved using LA approaches.

•	 We introduced a linear reward-inaction (LRI)-based solu-
tion to tackle the single elevator problem. It has been
referred to as SEP3.

•	 We also presented an improvement on SEP3 by including
the so-called pursuit phenomenon into the LA solution.
This led to the PLRI-based solution, referred to as SEP4,
and this yielded better results and faster convergence than
SEP3.

•	 To summarize, we have shown that LA-based solutions
can solve elevator-like problems without requiring any
knowledge of the underlying distributions. Amazingly
enough, the results and solutions that they yielded are
near-optimal.

2 � The single elevator problem (SEP)

The problem we are trying to tackle can be stated as follows:
we have a specific building with n floors and a single elevator.
The floors and passengers are characterized by distributions
C = {ca1, ..., can} and D = {de1, ..., den} , where cai is the prob-
ability of receiving a call from floor i, and dej is the probability
that the elevator drops the passenger off at floor j. These distri-
butions are unknown to the decision-making algorithm, and our
goal is to design LA-based solutions such that they adaptively
determine a set of floors for the e elevators to park at during the
idle period so as to minimize the passengers’ waiting time. In
this paper we deal with the case when e = 1.

The metric used as a performance measure in our study
is the AWT of the passengers. This is clearly a function of
the number of floors, and of also how close the converged
solution is to the optimal floor.

3 � Simulation settings

Simulations require mutual specific configurations or set-
tings so as to be able to compare the different results
obtained from different solutions. In our simulations, we will

incorporate different simulation settings for the buildings.
The first item for these settings is the number of floors that
the building has. In the interest of uniformity, we will test
the models on four different types of buildings with varying
numbers of floors, which are 8-floor, 12-floor, 16-floor and
20-floor buildings.

We will also perform the simulations using four different
types of distributions4 for C , listed below:

1.	 The first is an exponential distribution designed, referred
to as Exp, to simulate an up-peak traffic pattern, where
most calls come from the ground and/or lower floors,
and where the passengers intend to travel up;

2.	 The second distribution is the inverse exponential dis-
tribution, referred to as InvExp, that represents a down-
peak traffic pattern, where most calls are from the upper
floors, and where the passengers travel downward;

3.	 The third distribution is the Gaussian (normal) distri-
bution, referred to as Gaussian, and this is intended to
represent the traffic of passengers during the middle of
the day, also referred to as “regular traffic”;

4.	 The final distribution that we will use is a bimodal dis-
tribution, referred to as Bimodal, which is specified as
a mixture of Gaussian distributions to represent a more
complex “regular traffic” pattern.

Given a particular distribution for C , we now specify how
the discretized probabilities for the respective floors are
obtained. We clarify this in Fig. 2 for a 12-floor building

Fig. 2   A typical bimodal distribution for a 12-floor building and the
corresponding discretized probabilities constituting C

4  It is a trivial task to examine other distributions, for example, ones
for which c

1
 is close to unity, as in the real-life setting of early morn-

ing traffic.

Author's personal copy

Evolving Systems	

1 3

with a bimodal distribution. The heights of the bimodal
curve for the 12 uniformly placed points on the x-axis rep-
resent the corresponding probabilities. The final values of
the probabilities are obtained by normalizing these heights
so that the sum becomes unity.

Tables 1, 2, 3 and 4 represent the calling probabilities
obtained from the four different distributions mentioned
above for 8, 12, 16 and 20-floor buildings respectively. The
corresponding tables for the destination distributions are
obtained in an analogous manner.

Before we close this section, we mention that as every
reader will appreciate, it is not easy to cover every aspect of
a result in a single paper. Indeed, the height of the “building”
(i.e., the number of “floors”), and the forms and parameters
of the distributions reported were just representative values.
The fact is that the MCS Thesis of the First Author was quite
comprehensive. It contained the experimental results for var-
ious “buildings” and for a host of distributions. Clearly, we

had to abridge these results for the purposes of this journal
submission.

Table 1   Simulation settings for C for an 8-floor building for different
distributions

The values represent the probabilities of receiving a passenger call
from each floor in accordance with the associated distribution

Dist Exp InvExp Gaussian Bimodel

ca
1

0.59387372 0.00109053 0.08215232 0.01898451
ca

2
0.24145104 0.00268228 0.1146528 0.08516571

ca
3

0.09816667 0.00659734 0.14318402 0.14316436
ca

4
0.03991159 0.01622684 0.16001087 0.12033347

ca
5

0.01622684 0.03991159 0.16001087 0.17698614
ca

6
0.00659734 0.09816667 0.14318402 0.2620605

ca
7

0.00268228 0.24145104 0.1146528 0.15804965
ca

8
0.00109053 0.59387372 0.08215232 0.03525567

Table 2   Simulation settings for C for a 12-floor building

The meaning of the entries is as described in the caption of Table 1

Dist Exp InvExp Gaussian Bimodal

ca
1

0.59344245 0.00002978 0.02592411 0.01270883
ca

2
0.24127569 0.00007324 0.04518336 0.03860891

ca
3

0.09809538 0.00018013 0.07046903 0.07525205
ca

4
0.0398826 0.00044306 0.09834746 0.09457958

ca
5

0.01621506 0.00108974 0.12282111 0.08017525
ca

6
0.00659255 0.00268033 0.13725493 0.06220755

ca
7

0.00268033 0.00659255 0.13725493 0.08440493
ca

8
0.00108974 0.01621506 0.12282111 0.14232761

ca
9

0.00044306 0.0398826 0.09834746 0.17475873
ca

10
0.00018013 0.09809538 0.07046903 0.13967666

ca
11

0.00007324 0.24127569 0.04518336 0.07169797
ca

12
0.00002978 0.59344245 0.02592411 0.02360195

Table 3   Simulation settings for C for a 16-floor building

The meaning of the entries is as described in the caption of Table 1

Dist Exp InvExp Gaussian Bimodal

ca
1

0.59343067 0.00000081 0.00588623 0.00309355
ca

2
0.24127091 0.000002 0.01281213 0.00952918

ca
3

0.09809343 0.00000492 0.02495463 0.02286339
ca

4
0.03988181 0.00001211 0.04349365 0.04274851

ca
5

0.01621473 0.00002978 0.06783372 0.06242093
ca

6
0.00659242 0.00007324 0.09466958 0.07186065

ca
7

0.00268028 0.00018013 0.118228 0.06788
ca

8
0.00108972 0.00044305 0.13212205 0.0604008

ca
9

0.00044305 0.00108972 0.13212205 0.06530901
ca

10
0.00018013 0.00268028 0.118228 0.08883733

ca
11

0.00007324 0.00659242 0.09466958 0.1184869
ca

12
0.00002978 0.01621473 0.06783372 0.13154

ca
13

0.00001211 0.03988181 0.04349365 0.1155474
ca

14
0.00000492 0.09809343 0.02495463 0.07933226

ca
15

0.000002 0.24127091 0.01281213 0.04245367
ca

16
0.00000081 0.59343067 0.00588623 0.01769641

Table 4   Simulation settings for C for a 20-floor building

The meaning of the entries is as described in the caption of Table 1

Dist Exp InvExp Gaussian Bimodal

ca
1

0.59343035 0.00000002 0.00088438 0.00077597
ca

2
0.24127078 0.00000005 0.00240398 0.00306903

ca
3

0.09809338 0.00000013 0.00584751 0.00945329
ca

4
0.03988179 0.00000033 0.01272787 0.02267767

ca
5

0.01621473 0.00000081 0.02479051 0.04237177
ca

6
0.00659242 0.000002 0.04320761 0.06168651

ca
7

0.00268028 0.00000492 0.0673876 0.07013443
ca

8
0.00108972 0.00001211 0.09404697 0.06308409

ca
9

0.00044305 0.00002978 0.11745045 0.04806619
ca

10
0.00018013 0.00007324 0.13125312 0.04023324

ca
11

0.00007324 0.00018013 0.13125312 0.05156804
ca

12
0.00002978 0.00044305 0.11745045 0.0817498

ca
13

0.00001211 0.00108972 0.09404697 0.11525582
ca

14
0.00000492 0.00268028 0.0673876 0.12987546

ca
15

0.000002 0.00659242 0.04320761 0.11450328
ca

16
0.00000081 0.01621473 0.02479051 0.07868357

ca
17

0.00000033 0.03988179 0.01272787 0.04211504
ca

18
0.00000013 0.09809338 0.00584751 0.01755607

ca
19

0.00000005 0.24127078 0.00240398 0.00569962
ca

20
0.00000002 0.59343035 0.00088438 0.00144109

Author's personal copy

	 Evolving Systems

1 3

4 � Competitive solutions

4.1 � Do nothing policy: SEP1

The Do_Nothing policy, referred to as SEP1, is formally
presented in Algorithm 1. As we can observe from the algo-
rithm, the simulation starts by selecting a random initial
parking floor for the elevator. This is done in an equiprob-
able manner. We then simulate a number of passenger calls
that require the elevator to go to the calling floor, dropping-
off the passenger at the destination floor, and then parking
the elevator car at the same destination floor while it waits
for the next passenger call.

To evaluate the average waiting time, we calculated the
waiting time for each call which, as mentioned, is used to
evaluate the performance of the policy. This is done by using
the following equation:

where � is a parameter characterizing the pace variable, and
which differs from one system to another because of differ-
ent shaft speeds and the associated accelerations/decelera-
tions of the elevator shafts. Since this is constant for all the
simulations, we ignored this pace parameter and focused
on the travel distance from the parked location to the floor
where the call is made, |calling_floor − parking_floor| ,
which does not change for different elevator systems even
if their paces are different. By doing this, the model would
be generalized so that it can be applied to different elevator
systems since it will be system independent. This yields the
final waiting time equation to be:

which is used to calculate the waiting time for all the policies
studied in the research.

(8)WT = � ∗ |calling_floor − parking_floor|,

(9)WT = |calling_floor − parking_floor|,

4.1.1 � Simulation results

To test the models, we ran a number of simulations for dif-
ferent building settings, as mentioned in Section 3. We ran
our tests on all the settings, but we will present and dis-
cuss, in the body of this section, the results for the 12-floor
scenario with the four different types of call distributions
specified above, and for a uniform destination distribution.
A more detailed and comprehensive set of results and plots
for numerous other types of buildings and distributions is
included in the thesis of the first author (Ghaleb 2018), but
not reported here in the interest of space.

With regard to the statistical test, we clarify the word
“ensemble”, which is the terminology used within the field
of LA to signify the statistical expression “independent rep-
lications”. More specifically, we have not invoked or utilized
any ML-based “ensemble” method. Rather, instead of com-
puting a metric to reflect the accuracy of any method over
a single experiment, one typically computes the time aver-
age of a collection (synonymously referred to as “independ-
ent replications“ or the “ensemble”) of experiments. This
renders the measurement of the metric reported to be more
accurate because of the ergodicity of the Markov Process.
The metric, in our case, is the number of floors that a client
has to wait for, after the Elevator has come to rest, and we
have reported the time average of the ensemble average.

In Table 5, we present the different call distributions for
the 12-floor building, in which we tested SEP1 on, and the
results of these simulations. The table shows the ensem-
ble AWT​ for passengers for an ensemble of 200 experi-
ments, and where the number of iterations (i.e., passenger
calls) was 1, 000. In the table, Dist refers to the type of

Table 5   Simulation results for a 12-floor building for the policy SEP1
for an ensemble of 200 experiments

The results reported are the average waiting times for passengers in
terms of number of floors for the elevator car to travel so as to reach
the next call from the parked location

Dist Exp InvExp Gaussian Bimodal

ca
1

0.59344245 0.00002978 0.02592411 0.01270883
ca

2
0.24127569 0.00007324 0.04518336 0.03860891

ca
3

0.09809538 0.00018013 0.07046903 0.07525205
ca

4
0.0398826 0.00044306 0.09834746 0.09457958

ca
5

0.01621506 0.00108974 0.12282111 0.08017525
ca

6
0.00659255 0.00268033 0.13725493 0.06220755

ca
7

0.00268033 0.00659255 0.13725493 0.08440493
ca

8
0.00108974 0.01621506 0.12282111 0.14232761

ca
9

0.00044306 0.0398826 0.09834746 0.17475873
ca

10
0.00018013 0.09809538 0.07046903 0.13967666

ca
11

0.00007324 0.24127569 0.04518336 0.07169797
ca

12
0.00002978 0.59344245 0.02592411 0.02360195

AWT​ 5.36434 5.376775 3.60748 3.707325

Author's personal copy

Evolving Systems	

1 3

distribution used in that simulation, ci is the call prob-
ability at floor i, and AWT​ is the corresponding average
waiting time of the passengers in that experiment.

To cite one example, for the exponential distribution,
Exp, we obtained an average waiting time, AWT​, of 5.36.
This means that if the building has call probabilities as
per this distribution, the elevator with no intelligent park-
ing policy will result in having an AWT​ of almost 6 floors
distance.

Similarly in the inverse exponential distribution, InvExp,
SEP1 yielded very similar results, with an AWT​ of 5.38,
which is very reasonable since it merely “inverses” the prob-
abilities to be in an increasing order.

In the Gaussian distribution, Gaussian, the AWT​ was
reduced to 3.6 as the traffic was evenly more distributed
across the building. Similarly, in the more complicated dis-
tribution, Bimodal, the value was close to the Gaussian, with
an AWT​ of 3.7.

Since the parking policy in SEP1 depends on the desti-
nation floor, the AWT​ is heavily affected by both C and D .
If both the distributions are skewed towards a specific area
of the building, this will result in a small value for AWT​. If,
however, they are opposing each other, such as having C to
be Exp and D to be InvExp, it will produce a very high AWT​
. Many of these simulations results are included here, but
additional results are found in Ghaleb (2018).

In Fig. 3, we plot the results of the AWT​ for an ensem-
ble of 200 experiments for the Exp Distribution, where the
number of passenger calls is 1, 000. Observe that the SEP1
policy quickly leads to the final converged value of the AWT​,
in less than 50 passenger calls.

4.2 � Myopic policy: SEP2

The second policy, SEP2, was based on the model that was
proposed in Parlar et al. (2006), referred to as a “Myopic
Policy”. The principle motivating it is that the model selects
a predetermined floor that the elevator waits at for the next
call. The model precomputes the best possible floor that the
elevator should park at, so as to minimize the average wait-
ing time. This model resorts to using the Call Distribution,
C , to determine that floor.

The main simulation follows the same process as the
SEP1 policy in Sect. 4.1, where the elevator receives a call
and then picks the passenger up at that floor and drops the
passenger off at the destination. It then moves to the pre-
determined floor to wait for the next call. The difference
between SEP1 and SEP2 lies in the selection of the parking
floor policy, where, instead of waiting at the drop-off floor,
it moves to the pre-determined parking floor where it will
wait for the next call. The corresponding algorithm is in
Algorithm 2.

Algorithm 3 shows the “optimal floor” selection algo-
rithm that is used to compute the optimal parking floor. This
is done by exhaustively searching across all the floors so
as to compute which floor produces the minimum expected
waiting time, as described in Eq. (10).

where f is the floor selected as a parking floor, n is the num-
ber of floors in the building, g(y) is the probability of receiv-
ing a call from the floor y.

(10)T(f) =

n∑

y=1

|y − f | ∗ g(y),

Fig. 3   The average waiting time for the “do nothing” policy, SEP1,
for an ensemble of 200 experiments for the case of the Exp distribu-
tion

Author's personal copy

	 Evolving Systems

1 3

The main disadvantage of this policy is that it requires
the a priori knowledge of C so as to calculate the expected
waiting time for each floor.

4.2.1 � Simulation results

To test the performance of SEP2, the myopic policy, we used
the same building settings mentioned previously. For the
sake of comparison, we will include the results for the same
settings that we showed the results for, in SEP1. In Table 6,
we use the same legend as in Table 5 with the addition of BF
which is the “best parking floor” calculated.

From Table 6, where we considered the case of 12 floors,
we can see that the performance of SEP2 exceeded that of
SEP1, especially when the distribution is skewed towards a
specific floor, as in Exp and InvExp. The AWT​ in the Exp sce-
nario decreased significantly from 5.36 to 0.71. Unlike SEP1,

the algorithm determined a floor that it will always wait at for
the next call, which is the first floor in the Exp setting.

Similarly, in the InvExp scenario, the results showed a
huge decrease in the AWT​, and the algorithm determined
that the best parking floor was floor 12, and that resulted in
an AWT​ of 0.75, which was reduced significantly from 5.38.
Both the Exp and InvExp scenarios yielded a huge decrease
in the AWT​ of about 85%.

In the Gaussian and Bimodal cases, the improvements
in the performance were not as significant as in the previ-
ous distributions, as most of the calls were more distributed
across all the floors. So it is reasonable to expect a higher
AWT​ because more calls originated from other floors. For
the Gaussian case, the algorithm picked floor 6 to be the

Table 6   Simulation results for a 12-floor building for the policy SEP2
for an ensemble of 200 experiments

The results reported are the average waiting times for passengers in
terms of number of floors for the elevator car to travel so as to reach
the next call from the parked location

Dist Exp InvExp Gaussian Bimodal

ca
1

0.59344245 0.00002978 0.02592411 0.01270883
ca

2
0.24127569 0.00007324 0.04518336 0.03860891

ca
3

0.09809538 0.00018013 0.07046903 0.07525205
ca

4
0.0398826 0.00044306 0.09834746 0.09457958

ca
5

0.01621506 0.00108974 0.12282111 0.08017525
ca

6
0.00659255 0.00268033 0.13725493 0.06220755

ca
7

0.00268033 0.00659255 0.13725493 0.08440493
ca

8
0.00108974 0.01621506 0.12282111 0.14232761

ca
9

0.00044306 0.0398826 0.09834746 0.17475873
ca

10
0.00018013 0.09809538 0.07046903 0.13967666

ca
11

0.00007324 0.24127569 0.04518336 0.07169797
ca

12
0.00002978 0.59344245 0.02592411 0.02360195

BestFloor 1 12 6 8
AWT​ 0.71168 0.750515 2.131015 2.250805

Fig. 4   Average waiting time for the “myopic policy”, SEP2, for an
ensemble of 200 experiments for the case of Experiment Ex(1)

Fig. 5   The average waiting time for SEP1 vs. SEP2, for an ensemble
of 200 experiments for the case of the Exp distribution

Author's personal copy

Evolving Systems	

1 3

optimal one, and that reduced the AWT​ to 2.13 from 3.61.
For the Bimodal case, floor 8 was selected to be optimal, and
that reduced the AWT​ to 2.25 from 3.71. In both distribu-
tions, the decrease in waiting time was around 40%.

In Fig. 4, we plot the results of the AWT​ for an ensem-
ble of 200 experiments for the Exp distribution, where the
number of passenger calls is 1, 000. Observe that for the
SEP2, the value first increased steeply, and was then able
to converge to a final small value of AWT​ in less than 100
calls. This is very reasonable since it calculates the best floor
before the simulation deals with the calls.

In Fig. 5, one can observe the difference in the perfor-
mance between the two policies, SEP1 and SEP2, and how
the SEP2 outperformed SEP1 to produce a very low AWT​ in
comparison with SEP1.

The problem with SEP2 is that to achieve these results, the
algorithm needed to know C so as to calculate the best parking
floor. In the next section, we will show how one can obtain
even more superior results or (close to the optimal results)
with LA-based solutions that do not require this knowledge.

5 � LA‑based solutions

In this section, we are going to present our proposed LA-
based solutions for the SEP. First, we will show how we
have modelled the problem, and thereafter we present an LRI
-based solution to the problem. Subsequently, we submit an
enhancement on the LRI solution, in which we use the pursuit
concept for the LRI , and this yielded the second and even
better solution, which is the PLRI-based solution.

5.1 � Problem modelling

Before we present our proposed solutions, we need to
explain how the problem was modelled so that it could be
solved using an LA approach. As mentioned in Sect. 1, any
LA structure consists of an Environment and the LA itself.
The LA chooses one of the actions it is offered, i.e., one that
is relevant to the problem domain, and then the Environ-
ment evaluates it and reacts based on the criterion it uses
by responding with a reward or penalty feedback to the LA.

In the SEP, the modelling is much simpler than in the
MEP investigated later. In the SEP, we modelled the floors
as the actions of the LA, which, hopefully, will eventually
converge to one that can be reckoned as the best parking
floor. We then modelled the Environment so that it could
provide us with the feedback about whether the selected
floor was good or bad. In the former case the decision was
rewarded, and in the latter, it was penalized.

To achieve this, we divided the SEP into two different
parts, namely the controller and the evaluator. When it

concerns the LA-based solution, we can say that the con-
troller is the LA and the evaluator is the Environment, which
evaluates the action selected by the controller or the LA.

The LA acts as the elevators’ controller, which chooses
one of the available floors or (actions) where the elevator
will park at to wait for the next passenger call. On the
other hand, the Environment evaluates the selected floor
based on the objective or fitness function that is specified.
One thing to note here is that the LA, or the controller,
does not know anything about the distribution of passen-
gers’ calls, C , unlike the solutions presented earlier.

5.2 � L
RI

‑based solution: SEP3

Our first proposed solution, referred to as SEP3, is based
on the LRI scheme, where the LA updates the actions prob-
abilities when it receives a reward from the Environment,
and it does nothing when it receives a penalty. Based on
the theory of LA, the LRI scheme helps us to achieve a
near-optimal solution by updating the action probabilities
to converge towards the best possible solution, which, in
our case, is the best parking floor.

We present the corresponding algorithm in Algorithm 4.
Initially, when the simulation of the experiments begins,
the LA begins by selecting one of the available floors
(actions) as the initial parking floor with equal probabil-
ity and sends the selected floor to the environment. Once
the environment receives the selected floor, it evaluates it
based on the passengers’ AWT​ from the start of the simu-
lation until that time instance, as shown in Algorithm 5.
If the Environment evaluates that the waiting time is less
than or equal to the AWT​, it sends a reward feedback to the
LA, informing it that it was a good choice. Otherwise, it
sends a penalty feedback.

Author's personal copy

	 Evolving Systems

1 3

Once the LA receives the feedback, it checks whether it
was a reward or a penalty. If it was a reward, the LA updates
the probabilities of the floors according to the previously
selected action in an LRI manner. In Algorithm 6 we present
how the LA updates the probabilities of the floors.

The LA then starts selecting a new parking floor based
on the updated distribution, and repeats the process until it,
hopefully, converges to the best parking floor.

5.2.1 � Simulation results

To test our proposed solution, we used the same building
settings that were used earlier in Sects. 4.1 and 4.2 for the
purpose of a fair comparison. We discuss the results below
in Table 7.

From Table 7, one can observe that our proposed solution
yielded the optimal parking floor with a value that is very
close to the optimal AWT​.

Consider the first scenario with the exponential distribu-
tion, Exp. The obtained results showed that the proposed
solution converged to the optimal floor, which is the first

floor, and was able to reach a better AWT​ than SEP1 and
very close to SEP2, with an AWT​ of around 1.15 floors to
reach the calling floor.

Similarly, in the second scenario, InvExp, our results
demonstrated that the LRI algorithm was able to converge
to a floor close to the best floor, which is the 11th floor.
Since this distribution is merely the “inverse” of the previ-
ous distribution, this was a very reasonable choice. This
yielded an AWT​ of 1.19. Both the first and second scenar-
ios showed a huge increase in performance in comparison
with SEP1 and also produced results comparable to the
SEP2 without requiring them to know C a priori.

Table 7   Simulation results for a 12-floor building for the policy SEP3
for an ensemble of 200 experiments

The results reported are the average waiting times for passengers in
terms of number of floors for the elevator car to travel so as to reach
the next call from the parked location

Dist Exp InvExp Gaussian Bimodal

ca
1

0.59344245 0.00002978 0.02592411 0.01270883
ca

2
0.24127569 0.00007324 0.04518336 0.03860891

ca
3

0.09809538 0.00018013 0.07046903 0.07525205
ca

4
0.0398826 0.00044306 0.09834746 0.09457958

ca
5

0.01621506 0.00108974 0.12282111 0.08017525
ca

6
0.00659255 0.00268033 0.13725493 0.06220755

ca
7

0.00268033 0.00659255 0.13725493 0.08440493
ca

8
0.00108974 0.01621506 0.12282111 0.14232761

ca
9

0.00044306 0.0398826 0.09834746 0.17475873
ca

10
0.00018013 0.09809538 0.07046903 0.13967666

ca
11

0.00007324 0.24127569 0.04518336 0.07169797
ca

12
0.00002978 0.59344245 0.02592411 0.02360195

BestFloor 2 11 7 8
AWT​ 1.14951 1.191435 2.434935 2.560355

Fig. 6   The average waiting time for the L
RI

 solution, SEP3, for an
ensemble of 200 experiments for the case of the Exp distribution

Author's personal copy

Evolving Systems	

1 3

In the third scenario, Gaussian, where most calls were
not concentrated and where they were more evenly distrib-
uted, the results showed that it achieved a very low AWT​
of 2.43 when it converged to floor 7.

Similarly, for the final scenario, Bimodal, it was able to
produce an even lower value of AWT​ than the SEP1 with
an AWT​ of 2.56, when it converged to floor 8. One can
observe here that the impact of the proposed algorithm is
very noticeable in the first two scenarios where the calls
were skewed towards a specific zone or a floor.

The overall performance of SEP3 yielded a significant
decrease in the AWT​ that was between 50% to almost 80%
of SEP1’s performance. It was also able to produce results
that were very close to SEP2, where the optimal solution
was known from the beginning. As opposed to this, in the
LA-based case, we did not use any methods to calculate
the best floor using any known distribution. Instead, SEP3
adapted to the Environment and was able to conclude the
identity of the best floor to be used as a parking floor.

Figure 6 demonstrates the behaviour of the AWT​ for
SEP3 over the number of calls as it decreases to be close
to a single floor.

5.3 � PL
RI

‑based solution: SEP4

The second LA-based solution, referred to as SEP4, is an
improvement on the LRI-based solution, SEP3, and it aimed
to achieve an even better performance and faster conver-
gence. To design it, we included the pursuit phenomenon
described in Sect. 1.5. This allowed the LA to pursue
the action with the superior reward ratio rather than just

updating the selected action. The formal algorithm is shown
in Algorithm 7.

From Algorithm 7, one can observe that it executes in the
same manner as SEP3, but it differed when achieving the
task of updating the action probabilities. For every action,
it accomplished this by keeping track of the ratio of the
rewards obtained to the number of times the action was
selected. Consequently, we introduced the vector of reward
estimates to keep track of the reward ratio.

The simulation started by selecting each floor a small
number of times (i.e., ten times each in our case), and
recording the ratio of how many times each floor received
a reward when compared to the number of times it was
selected. Thereafter, the simulation proceeded along the
same lines as the previous SEP3. The system first receives a
call from a passenger, and it calculates the waiting time. It
then requests the Environment for the feedback. The Envi-
ronment evaluates the selected floor, and as done in Algo-
rithm 8, it uses the average waiting time to decide on the
feedback sent to the LA.

If the LA gets a reward, it updates the probabilities of
the parking floors as in Algorithm 8. Instead of increasing
the probability of selected floor, it pursues the one with the
maximum reward estimate and increases its probability. This
mechanism ensures that the algorithm converges towards the
best solution faster than SEP3.

Table 8   Simulation results for a 12-floor building for the policy SEP4
for an ensemble of 200 experiments

The results reported are the average waiting times for passengers in
terms of number of floors for the elevator car to travel so as to reach
the next call from the parked location

Dist Exp InvExp Gaussian Bimodal

ca
1

0.59344245 0.00002978 0.02592411 0.01270883
ca

2
0.24127569 0.00007324 0.04518336 0.03860891

ca
3

0.09809538 0.00018013 0.07046903 0.07525205
ca

4
0.0398826 0.00044306 0.09834746 0.09457958

ca
5

0.01621506 0.00108974 0.12282111 0.08017525
ca

6
0.00659255 0.00268033 0.13725493 0.06220755

ca
7

0.00268033 0.00659255 0.13725493 0.08440493
ca

8
0.00108974 0.01621506 0.12282111 0.14232761

ca
9

0.00044306 0.0398826 0.09834746 0.17475873
ca

10
0.00018013 0.09809538 0.07046903 0.13967666

ca
11

0.00007324 0.24127569 0.04518336 0.07169797
ca

12
0.00002978 0.59344245 0.02592411 0.02360195

BestFloor 1 12 6 8
AWT​ 0.84734 0.839 2.36355 2.53346

Author's personal copy

	 Evolving Systems

1 3

After that, the LA updates the rewards’ estimates and
again chooses a parking floor to be evaluated, and repeats
the same cycle until it converges.

5.3.1 � Simulation results

To test SEP4, we used the same building settings as the
previous solutions, SEP1, SEP2 and SEP3. Table 8 pre-
sents the results acquired from the simulations of the four
distributions, and the corresponding results for SEP4.

In the first scenario, Exp, the results acquired showed
an improvement in the performance with comparison to
SEP3. The AWT​ decreased even more as a result of a faster
convergence to the optimal location and even closer results
to the optimal values of SEP2 with an AWT​ of 0.85 down
from 1.15.

Similarly, in the second scenario, InvExp, SEP4 dis-
played a superior performance with a similar decrease in
AWT​ from 1.19 to 0.84. We can see the significant impact
on the performance, and how the faster convergence led
to almost a 30% decrease in the AWT​ when compared to
SEP3.

In the third scenario, Gaussian, the results in SEP4
showed better results than SEP3, but the increase in the
performance was not as significant as the previous sce-
narios with a decrease in the AWT​ from 2.43 to 2.37.

Similarly, for the final scenario, Bimodal, it was able
to produce a lower AWT​ than SEP3 with an AWT​ of 2.53
down from 2.56 and converged to floor 8. One can observe
how the effect of the pursuit concept in SEP4 helps to
increase the performance and produce superior results in
all scenarios, and how C affects this improvement.

Figure 7 displays the behaviour of how the AWT​
decreased over time for the first scenario, Exp for SEP4.

From Figure 8, we can see the difference in convergence
speed between the SEP3 and SEP4, where SEP4 displays

a better performance and faster convergence, attributed to
incorporating the Pursuit concept.

6 � Results and discussion

We now comparatively discuss the simulations results
obtained from the previous solutions. We will first dis-
cuss the results obtained in the previous simulations for
the 12-story building setting, and then submit and discuss
the simulation results for other building settings that were
not discussed in our previous paper (Ghaleb and Oommen
2019).

6.1 � 12‑Story building

In Table 9, we submit all the results of the four solutions
that were discussed, namely, SEP1, SEP2, SEP3 and SEP4.
From the table, we see that SEP1, which we believe is the
most popular policy currently used in buildings, performed
very poorly in comparison to our proposed solutions. The
improvement in the average waiting time was more than
50% and up to 80%. This policy serves as a lower bound
for our benchmark, as no solution should be worse than
this.

SEP2 was able to give us the optimal parking floors
from the beginning, but it required the a priori knowledge
of C for each floor. On the other hand, our LA-based solu-
tions were able to achieve a close-to-optimal AWT​ without
the knowledge of C.

SEP3 showed that it was better than SEP1 and recorded
an AWT​ improvement in Exp of 78.56%, InveExp of

Fig. 7   The average waiting time for the PL
RI

 solution, SEP4, for an
ensemble of 200 experiments for the case of the Exp distribution

Author's personal copy

Evolving Systems	

1 3

77.85%, Gaussian of 32.49% and Bimodal of 30.9%.
Moreover, the results were close to the values achieved
by SEP2.

We attempted to improve SEP3 by proposing SEP4 that
incorporated the Pursuit concept. Here, we achieved even
better results than obtained for the SEP3. The algorithm
helped the system to converge faster to the optimal locations.
It also resulted in a better overall AWT​. The improvements
were 26.3% for the Exp, 29.5% for the InvExp, 3% for the
Gaussian and 1% for the Bimodal distributions.

One result that we found is that the more equally distrib-
uted the calls are, for example for the Gaussian distribu-
tion, the higher the AWT​ will be. On the other hand, the
importance of having a good policy shines when the calling
distribution is skewed toward a specific region or a specific
floor. Also, one can observe how the policies affected the
AWT​ in the first and the second scenarios, Exp and InvExp.

In Fig. 9, we present the performance of each algorithm
and how our proposed LA-based algorithms were able to
achieve an average waiting time that is very close to the
optimal solution, SEP2, and how it significantly outperforms
SEP1.

Now we submit the results corresponding to the other
building settings and discuss how our solutions are com-
pared with SEP1 and SEP2.

6.2 � 8‑Story building

In Table 10, we submit all the results for the 8-story building
setting. From the table, we see that SEP1, which we believe
is the most popular policy currently used in buildings, per-
formed very poorly in comparison to our proposed solutions.
The improvement in the average waiting time was more than
30% and up to 80%. As mentioned before, this policy serves
as a lower bound for our benchmark, as no solution should
be worse than this.

SEP2 was able to give us the optimal parking floors from
the beginning, but it required the a priori knowledge of C
for each floor. On the other hand, our LA-based solutions
were able to achieve a close-to-optimal AWT​ without the
knowledge of C.

SEP3 showed that it was better than SEP1 and recorded
an AWT​ improvement in Exp of 73.03%, InveExp of 72.7%,
Gaussian of 23.49% and Bimodal of 34.5%. Moreover, the
results were close to the values achieved by SEP2.

We attempted to improve SEP3 by proposing SEP4 that
incorporated the Pursuit concept. Here, we achieved even
better results than obtained for the SEP3. The algorithm
helped the system to converge faster to the optimal locations.

Fig. 8   The average waiting time for the L
RI

 solution, SEP3, vs. PL
RI

solution, SEP4, for an ensemble of 200 experiments for the case of
the Exp distribution

Table 9   Simulation results for the previous and newly proposed solu-
tions for the SEP for an ensemble of 200 experiments for the 12-floor
settings

The results are given here as a tuple (�, �) where the first field, � , is
the best optimal parking floor and the second field, � is the AWT​ in
terms of number of floors travelled for the elevator to reach the pas-
senger from the parked location

Dist SEP1 SEP2 SEP3 SEP4

Exp (−, 5.364) (1, 0.712) (2, 1.150) (1, 0.847)
InvExp (−, 5.377) (12, 0.751) (11, 1.191) (12, 0.839)
Gaussian (−, 3.607) (6, 2.131) (7, 2.435) (6, 2.364)
Bimodal (−, 3.707) (8, 2.251) (8, 2.560) (8, 2.533)

Fig. 9   The Average Waiting Time for SEP1, SEP2, SEP3 and SEP4
for an ensemble of 200 experiments for the case of the Exp distribu-
tion, given in the graph as P1, P2, L

RI
 , PL

RI
 respectively

Author's personal copy

	 Evolving Systems

1 3

It also resulted in a better overall AWT​. The improvements
were 14.8% for the Exp, 15.9% for the InvExp, 1.56% for the
Gaussian and 1.8% for the Bimodal distributions.

One result that we found is that the more equally distrib-
uted the calls are, for example for the Gaussian distribu-
tion, the higher the AWT​ will be. On the other hand, the
importance of having a good policy shines when the calling
distribution is skewed toward a specific region or a specific
floor. Also, one can observe how the policies affected the
AWT​ in the first and the second scenarios, Exp and InvExp.

In Fig. 10, we present the performance of each algorithm
and how our proposed LA-based algorithms were able to
achieve an average waiting time that is very close to the
optimal solution, SEP2, and how it significantly outperforms
SEP1 for all the different distributions.

6.3 � 16‑Story building

In Table 11, we submit all the results for the 16-story build-
ing setting. From the table, we see that SEP1, which we
believe is the most popular policy currently used in build-
ings, performed very poorly in comparison to our proposed
solutions. The improvement in the average waiting time was
more than 34% and up to 90%. As mentioned before, this
policy serves as a lower bound for our benchmark, as no
solution should be worse than this.

SEP2 was able to give us the optimal parking floors from
the beginning, but it required the a priori knowledge of C
for each floor. On the other hand, our LA-based solutions
were able to achieve a close-to-optimal AWT​ without the
knowledge of C.

SEP3 showed that it was better than SEP1 and recorded
an AWT​ improvement in Exp of 79.56%, InveExp of 78.79%,
Gaussian of 41.76% and Bimodal of 34.34%. Moreover, the
results were close to the values achieved by SEP2.

As in the previous settings, we attempted to improve
SEP3 by proposing SEP4 that incorporated the Pursuit con-
cept. Here, we achieved even better results than obtained
for the SEP3. The algorithm helped the system to converge

faster to the optimal locations. It also resulted in a better
overall AWT​. The improvements were 40.27% for the Exp,
40.7% for the InvExp, 1.98% for the Gaussian and 3.11% for
the Bimodal distributions.

As in the previous results, we found is that the more
equally distributed the calls are, for example for the Gauss-
ian distribution, the higher the AWT​ will be. On the other
hand, the importance of having a good policy shines when
the calling distribution is skewed toward a specific region
or a specific floor. Also, one can observe how the policies
affected the AWT​ in the first and the second scenarios, Exp
and InvExp.

In Fig. 11, we present the performance of each algorithm
and how our proposed LA-based algorithms were able to
achieve an average waiting time that is very close to the
optimal solution, SEP2, and how it significantly outperforms
SEP1.

6.4 � 20‑Story building

In Table 12, we submit all the results for the 20-story build-
ing setting. From the table, we see that SEP1, which we
believe is the most popular policy currently used in build-
ings, performed very poorly in comparison to our proposed
solutions. The improvement in the average waiting time was
more than 37% and up to 90%. As mentioned before, this
policy serves as a lower bound for our benchmark, as no
solution should be worse than this.

SEP2 was able to give us the optimal parking floors from
the beginning, but it required the a priori knowledge of C
for each floor. On the other hand, our LA-based solutions
were able to achieve a close-to-optimal AWT​ without the
knowledge of C.

SEP3 showed that it was better than SEP1 and recorded
an AWT​ improvement in Exp of 80.3%, InveExp of 79.4%,
Gaussian of 49.3% and Bimodal of 37.2%. Moreover, the
results were close to the values achieved by SEP2.

As in the previous settings, we attempted to improve
SEP3 by proposing SEP4 that incorporated the Pursuit con-
cept. Here, we achieved even better results than obtained
for the SEP3. The algorithm helped the system to converge
faster to the optimal locations. It also resulted in a better
overall AWT​. The improvements were 49.02% for the Exp,
49.2% for the InvExp, 1.1% for the Gaussian and 1.3% for
the Bimodal distributions.

One more result that we found is that the more floors we
have in the building, such system has more impact and better
performance improvement.

In Fig. 12, we present the performance of each algorithm
and how our proposed LA-based algorithms were able to
achieve an average waiting time that is very close to the
optimal solution, SEP2, and how it significantly outperforms
SEP1.

Table 10   Simulation results for the previous and newly proposed
solutions for the SEP for an ensemble of 200 experiments for the
8-floor settings

The results are given here as a tuple (�, �) where the first field, � , is
the best optimal parking floor and the second field, � is the AWT​ in
terms of number of floors travelled for the elevator to reach the pas-
senger from the parked location

Dist SEP1 SEP2 SEP3 SEP4

Exp (−, 3.4080) (1, 0.673) (2, 0.919) (1, 0.783)
InvExp (−, 3.4086) (8, 0.760) (7, 0.930) (8, 0.782)
Gaussian (−, 2.508) (5, 1.747) (5, 1.919) (4, 1.889)
Bimodal (−, 2.423) (5, 1.473) (6, 1.586) (6, 1.557)

Author's personal copy

Evolving Systems	

1 3

7 � Conclusion

In this paper, we have concentrated on a host of problems
with properties that are similar to those related to moving
elevators within a building. These are referred to as ele-
vator-like problems (ELPs). The paper has discussed their
common properties, and we have resolved ELPs using the
field of learning automata (LA). The simulation of these
schemes has been done with modeling ELPs to be eleva-
tors working in “buildings” with “floors” etc. Our aim has
been to minimize the average waiting time (AWT) for the
“passengers”.

(a) Exp (b) InvExp

(c) Gaussian (d) Bimodal

Fig. 10   The average waiting time for SEP1, SEP2, SEP3 and SEP4 for an ensemble of 200 experiments for the case of the different distributions
for 8-floor building setting

Table 11   Simulation results for the previous and newly proposed
solutions for the SEP for an ensemble of 200 experiments for the
16-floor settings

The results are given here as a tuple (�, �) where the first field, � , is
the best optimal parking floor and the second field, � is the AWT​ in
terms of number of floors travelled for the elevator to reach the pas-
senger from the parked location

Dist SEP1 SEP2 SEP3 SEP4

Exp (−, 7.352) (1, 0.705) (2, 1.502) (1, 0.897)
InvExp (−, 7.342) (16, 0.639) (15, 1.557) (16, 0.922)
Gaussian (−, 4.583) (9, 2.375) (8, 2.669) (8, 2.617)
Bimodal (−, 4.894) (11, 2.879) (10, 3.213) (11, 3.113)

Author's personal copy

	 Evolving Systems

1 3

In this paper, we reviewed different parking policies that
were used in various building settings and for previously-
reported solutions. We discussed two different solutions in
the single elevator scenario and tabulated the experimental
results that correspond to the various simulations. We then
introduced our LRI-based solution, SEP3, and it achieved the
optimal parking floor without knowing C a priori. We then
improved on SEP3 to incorporate the Pursuit concept. Our
second solution, SEP4, a PLRI-based solution, out-performed
SEP3.

We further reviewed the results of the different build-
ing settings, 8,16 and 20-floor buildings, and compared the
results that demonstrated that our proposed solutions outper-
formed the SEP2 and produced AWT​ results that are close to

(a) Exp (b) InvExp

(c) Gaussian (d) Bimodal

Fig. 11   The average waiting time for SEP1, SEP2, SEP3 and SEP4 for an ensemble of 200 experiments for the case of the different distributions
for 16-floor building setting

Table 12   Simulation results for the previous and newly proposed
solutions for the SEP for an ensemble of 200 experiments for the
20-floor settings

The results are given here as a tuple (�, �) where the first field, � , is
the best optimal parking floor and the second field, � is the AWT​ in
terms of number of floors travelled for the elevator to reach the pas-
senger from the parked location

Dist SEP1 SEP2 SEP3 SEP4

Exp (−, 9.342) (1, 0.676) (2, 1.840) (1, 0.938)
InvExp (−, 9.341) (20, 0.723) (19, 1.921) (20, 0.976)
Gaussian (−, 5.538) (11, 2.453) (11, 2.805) (10, 2.774)
Bimodal (−, 5.867) (13, 3.261) (13, 3.687) (13, 3.639)

Author's personal copy

Evolving Systems	

1 3

the optimal results and was able to converge to the correct
optimal parking locations.

Thus, we showed that our LA-based solutions performed
better than SEP1 and converged to the optimal floor. They
also reduced the AWT​ to be close to the optimal value with
the advantage that they did not require us to know the dis-
tributions to determine the best floor.

References

Barto A, Crites RH (1995) Improving elevator performance using
reinforcement learning. In: Proceedings of the 8th International

Conference on Neural Information Processing Systems, pp
1017–1023

Cheo YC, Gagov Z, Kwon WH (1999) Elevator group control with
accurate estimation of hall call waiting times. IEEE: International
Conference on Robotics & Automation, pp 447–452

Ghaleb O (2018) Novel solutions and applications to elevator-like prob-
lems. MCS Thesis, Carleton University, Ottawa, Canada

Ghaleb O, Oommen BJ (2019) Learning Automata-Based Solutions
to the Single Elevator Problem, pages 439–450. Proceedings of
AIAI’19, the 2019 International Conference on Artificial Intelli-
gence Applications and Innovations, Crete, Greece, pp 439–450.
https​://doi.org/10.1007/978-3-030-19823​-7_37

Kabudian J, Meybodi MR, Homayounpour MM (2004) Applying con-
tinuous action reinforcement learning automata (carla) to global
training of hidden markov models. In Information Technology:

(a) Exp (b) InvExp

(c) Gaussian (d) Bimodal

Fig. 12   The average waiting time for SEP1, SEP2, SEP3 and SEP4 for an ensemble of 200 experiments for the case of the different distributions
for 20-floor building setting

Author's personal copy

https://doi.org/10.1007/978-3-030-19823-7_37

	 Evolving Systems

1 3

Coding and Computing, 2004. Proceedings. ITCC 2004. Interna-
tional Conference on IEEE, volume 2, pp 638–642

Meybodi MR, Beigy H (2002) New learning automata based algo-
rithms for adaptation of backpropagation algorithm parameters.
Int J Neural Syst 12(01):45–67

Misra S, Oommen BJ (2004) GPSPA: a new adaptive algorithm for
maintaining shortest path routing trees in stochastic networks. Int
J Commun Syst 17(10):963–984

Molina S, Leguizam G (2007) An ACO model for a non-stationary
formulation of the single elevator problem on. 7(1):45–51

Narendra KS, Thathachar MAL (2012) Learning automata: an intro-
duction. Courier Corporation

Obaidat MS, Papadimitriou GI, Pomportsis AS, Laskaridis HS (2002)
Learning automata-based bus arbitration for shared-medium
ATM switches. IEEE Trans Syst Man Cybern Part B (Cybernet-
ics) 32(6):815–820

Oommen BJ, Lanctot JK (1990) Discretized pursuit learning automata.
IEEE Trans Syst Man Cybern 20(4):931–938

Oommen BJ, Roberts TD (2000) Continuous learning automata solu-
tions to the capacity assignment problem. IEEE Trans Comput
49(6):608–620

Papadimitriou GI, Pomportsis AS (2000) Learning-automata-based
TDMA protocols for broadcast communication systems with
bursty traffic. IEEE Commun Lett 4(3):107–109

Parlar M, Sharafali M, Ou J (2006) Optimal parking of idle eleva-
tors under myopic and state-dependent policies. Eur J Oper Res
170(3):863–886

Seredyński F (1998) Distributed scheduling using simple learning
machines. Eur J Oper Res 107(2):401–413

Sun J, Zhao Q, Luh PB, Atalla MJ (2006) Estimation of optimal eleva-
tor scheduling performance. Proc IEEE Int Conf Robot Autom
2006:1078–1083

Tanaka S, Innami Y, Araki M (2004) A study on objective functions
for dynamic operation optimization of a single-car elevator system
with destination hall call registration. Conf Proc IEEE Int Conf
Syst Man Cybern 7:6274–6279

Tanaka S, Uraguchi Y, Araki M (2005) Dynamic optimization of
the operation of single-car elevator systems with destination

hall call registration. Eur J Oper Res Part I Formulat Simulat
167(2):550–573

Tanaka S, Uraguchi Y, Araki M (2005) Dynamic optimization
of the operation of single-car elevator systems with desti-
nation hall call registration. Eur J Oper Res Part II Solut
Algorithm 167(2):550–573

Tartan EO, Erdem H, Berkol A (2014) Optimization of waiting and
journey time in group elevator system using genetic algorithms.
INISTA 2014—IEEE International Symposium on Innovations in
Intelligent Systems and Applications, Proceedings, pp 361–367

Thathachar MAL, Sastry PS (1984) A class of rapidly converging algo-
rithms for learning automata. In IEEE Int. Conf. on Systems, Man
and Cybernatics. IEEE

Thathachar MAL, Sastry PS (1985) A new approach to the design of
reinforcement schemes for learning automata. IEEE Trans Syste
Man Cybern 15(1):168–175

Thathachar MAL, Sastry PS (1986) Estimator algorithms for learn-
ing automata. In: Platinum Jubilee Conference on Systems and
Signal Processing

Tsetlin M (1961) On behaviour of finite automata in random medium.
Avtomat. i Telemekh 22(10):1345–1354

Varshavskii V, Vorontsova IP (1963) On the behavior of stochastic
automata with a variable structure. Avtomatika i Telemekhanika
24(3):353–360

Xu J, Feng T (2016) Single elevator scheduling problem with complete
information: an exact model using mixed integer linear program-
ming. pp 2894–2899

Zheng L, Guang S, Hui D (2013) Research of elevator group sched-
uling system based on reinforcement learning algorithm. Meas-
urement, Information and Control (ICMIC), 2013 International
Conference on, pp 606–610

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Author's personal copy

	On solving single elevator-like problems using a learning automata-based paradigm
	Abstract
	1 Introduction
	1.1 Survey of the field
	1.2 Learning automata (LA)
	1.3 Environment
	1.4 Automaton
	1.5 Estimator and pursuit algorithms
	1.6 Contributions of this paper

	2 The single elevator problem (SEP)
	3 Simulation settings
	4 Competitive solutions
	4.1 Do nothing policy: SEP1
	4.1.1 Simulation results

	4.2 Myopic policy: SEP2
	4.2.1 Simulation results

	5 LA-based solutions
	5.1 Problem modelling
	5.2 -based solution: SEP3
	5.2.1 Simulation results

	5.3 -based solution: SEP4
	5.3.1 Simulation results

	6 Results and discussion
	6.1 12-Story building
	6.2 8-Story building
	6.3 16-Story building
	6.4 20-Story building

	7 Conclusion
	References

