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"Dual"” Problem

Classification rule:
If aty,>0 assign y; to w; _
else if aty,<0 assign y, to w, ° Find asuch that: a'y>0

 Ify;in w,, replace y; by -y,

solution solution
region Y2 region ?’2 _

TE =i = =¥y
_ = To\ane ~ T o\ane
‘;egatatm% P ..gega@ﬁ“% plad
Seek a hyperplane that Seek a hyperplane that puts
separates patterns from normalized patterns on the
different categories same (positive) side
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Perceptron rule

- Use Gradient Descent assuming that the error function to be
minimized is:

ye¥(a)s—— | the set of samples

misclassified by a.

- IfY(a)is empty, J,( a )=0, otherwise, J,(a )2 0.

« Jp(a)is || || imes the sum of distances of misclassified.

- Jp(a)is is piecewise linear and thus suitable for gradient descent.
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Perceptron Batch Rule

- The gradient of J,(a ) is:

J (@)= > (-a'y) :> VJ,= > (-y)

yeY(a) yeY(a)

- Itis not possible to solve analytically v/ =0.

The perceptron update rule is obtained using gradient

descent:
a(k+l)=a(k)+nk) Dy
yelY(a)
- |t is called batch rule because it is based on all misclassified
examples
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Perceptron Single Sample Rule

- The gradient decent single sample rule for Jp(a) is:
) = glk) 4 ploy,

— Note that ym is one sample misclassified by a)
— Must have a consistent way of visiting samples

- Geometric Interpretation:

— Note that ym is one sample misclassified ()}t
by (a®)y, <o () yu <0
— yM is on the wrong side of decision
hyperplane

— Adding nym to a moves the new decision
hyperplane in the right direction with
respect to ywm
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Perceptron Single Sample Rule

ak+) = gk) 4 )y,

nis too large, previously nis too small, y,, is still
correctly classified sample misclassified
Y, is now misclassified
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Perceptron Example

features grade
name good tall? sleepsin | chews
attendance? class? gum?
Jane yes (1) | yes(1)| no(-1) | no (-1) yal
Steve yes (1) |yes(1)| yes(1) | yes (1) I
Mary no (-1) no(-1) | no(-1) | yes (1) o
Peter yes (1) | no(-1)| no(-1) | yes (1) A

« Class 1: students who get A
« Class 2: students who get F
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Perceptron Example

features grade
name good tall? sleepsin | chews
attendance? class? gum?
Jane yes (1) | yes(1)| no(-1) | no (-1) yal
Steve yes (1) |yes(1)| yes(1) | yes (1) I
Mary no (-1) no(-1) | no(-1) | yes (1) o
Peter yes (1) | no(-1)| no(-1) | yes (1) A

- Augment samples by adding an extra feature (dimension)

equal to 1
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Perceptron Example

features grade
name good tall? sleepsin | chews
attendance? class? gum?
Jane yes (1) | yes(1)| no(-1) | no (-1) yal
Steve yes (1) |yes(1)| yes(1) | yes (1) I
Mary no (-1) no(-1) | no(-1) | yes (1) o
Peter yes (1) | no(-1)| no(-1) | yes (1) A

« Normalize:

— Replace all examples from class 2 by their
¥i ==

negative values

— Seek asuch that:
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Perceptron Example

features grade
name good tall? sleepsin | chews
attendance? class? gum?
Jane yes (1) | yes(1)| no(-1) | no (-1) yal
Steve yes (1) | yes(1)| yes (1) | yes (1) I
Mary no (-1) no(-1) | no(-1) | yes (1) o
Peter yes (1) | no(-1)| no(-1) | yes (1) A

- Single Sample Rule:

— Sample is misclassified if a'y, = Zak y <0
— Gradient descent single sample rule: &t - a“+g¥ Yy

— Set n fixed learning rate to 5= 1
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Perceptron Example

- Set equal initial weights
a(=[0.25, 0.25, 0.25, 0.25, 0.25]

- Visit all samples sequentially, modifying the weights
after each misclassified example

name aty misclassified?
Jane 0.25*1+0.25*1+0.25%1+0.25%(-1)+0.25%(-1) >0 no
Steve | 0.25%(-1)+0.25%(-1)+0.25%(-1)+0.25%(-1)+0.25*(-1)<0 yes

- New weights

a?=a"+y, =[0.25 0.25 0.25 0.25 0.25]+
1 -1 -1 1 A=
=[-0.75 —0.75 -0.75 —-0.75 —0.75]
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Perceptron Example

a® =[-0.75 —0.75 —-0.75 —0.75 —0.75]

name aty misclassified?

Mary | -0.75%(-1)-0.75*1-0.75*1 -0.75 *1 -0.75%(-1) <0 yes

« New weights

a®=a%4+y, =[-0.75 -0.75 -0.75 —0.75 —0.75]+
¥-1 1 11 -1=
=[-1.75 0.25 0.25 0.25 —1.75]

ECSE-6610 Pattern Recognition Lecture 10 February 17, 2018



Perceptron Example

a® =[-1.75 0.25 0.25 0.25 —1.75]

name ary misclassified?

Peter | -1.75*1 +0.25" 1+0.25" (-1) +0.25 *(-1)-1.75"1 <0 yes

« New weights
a"=a%4+y, =[-1.75 0.25 0.25 0.25 —-1.75]+
s 1 -1 -1 1=
=[-0.75 1.25 -0.75 -0.75 —0.75]
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Perceptron Example

a® =[-0.75 1.25 -0.75 —-0.75 —0.75]

name aty misclassified?
Jane -0.75 *1 +1.25*1 -0.75"1 -0.75 *(-1) -0.75 *(-1)+0 no
Steve | -0.75%(-1)+1.25%(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0 no
Mary -0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 -0.75%(-1) >0 no
Peter -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

- Thus the discriminant function is:
g(y)=-075*y® +1.25*yW_0.75*y?® _0.75* y® - 0.75 * y¥
- Converting back to the original features x:

g(x)=1.25*x"-0.75*x? -0.75* x® -0.75* x*' - 0.75
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Perceptron Example

- Converting back to the original features x:

1.25* x"-0.75* x? -0.75* x® -0.75* x > 0.75 = grade A
1.25* x"-0.75* x? -0.75* x® -0.75* x*) < 0.75 = grade F

4 "4 N N

good tall sleepsinclass chews gum
attendance

« This is just one possible solution vector.

- If we started with weights a(V=[0,0.5, 0.5,0,0], the
solution would be [-1,1.5, -0.5, -1, -1]

1.5*x"-0.5*x¥) - x¥) - x1¥) 5 1= grade A
1.5*x"_0.5*x? - x¥ _ x4 < 1= grade F

 In this solution, being tall is the least important feature

ECSE-6610 Pattern Recognition Lecture 10 February 17, 2018



LDF': Non-separable Example

- Suppose we have 2 features and the samples are:
— Class 1:[2,1], [4,3], [3,5]
— Class 2:[1,3] and [5,6]

- These samples are not separable by a line

- Still would like to get approximate separation by a line
— A good choice is shown in green

— Some samples may be “noisy”, and we could accept them being
misclassified
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LDF': Non-separable Example

- Obtainyl1, y2, y3, y4 by adding extra feature and

“normalizing”
1
Y= ?

ECSE-6610 Pattern Recognition Lecture 10 February 17, 2018



LDF': Non-separable Example

« Apply Perceptron single sample algorithm

- Initial equal weights
all=[111]

— Line equation x(M+x+1=0

- Fixed learning rate n =17
a(k“"‘] — a{k) + yM

IR

s ytah=[1 111 21]t>0 ¥
s yah=[111][143}t>0 ¥
« yta®=[1 111 35'>0 ¥

:—" Q’—l 3 L] e (4, ] ﬁ_
/@3
M+
.
i
L4,
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LDF': Non-separable Example

a’=[111 a*=a®4y,
A 1 B
.V1-1 Y.= 3| Var"'s Y4-_3 ¥s= -
i

= yta?l=[111]"[-1-1-3]t=-5<0 A 13(2)

4 B 2

4] @ = wn L)
. W b, L] —

R
'

a9=a"+y, =[111+[-1-1-3]=]0 0 -2]
" y1;a2=[00-2]'[-1-5-6]'=12>0 ¥

= yt.a?=[00-2]"[121]t<0
a®¥=a?4+y, =[00-2]+[1 2 1]=[1 2 -1]
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LDF': Non-separable Example

al=[12-1 a*=a%4y,

ol e el e

= y,ad=[143[12-1]t=650 % + s + ¥ & =

= y,ad=[1 35]"[12-1]t>0 ¥

= y,ad=[-1-1-3]'[12-1]t=0
a¥=a"+y,=[12-1+[-1-1-3]=[01-4]

Lo L] Lk o n on
- by y 1 - "
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LDF': Non-separable Example

a¥=[01-4] a*"=a%4y,

wld] el eff] e[ [

K3 L] & w on
. ¥ - + '

-
L= ]
-
r
L]
s
o

+ ysa®=[-1-5-6]"[0 1 -4]=19>0
+ ya®=[12 1]*[0 1 -4]=-2<0
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LDF': Non-separable Example

a%=[01-4] a*"=a%+y,

ol g el ]

. =t P (7] e n o,
et k, - m + A

« y:ta®=[-1-5-6]*[0 1-4]=19>0
« yta®=[12 1]*[0 1 -4]=-2<0
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LDF': Non-separable Example

« We can continue this forever.
- There is no solution vector a satisfying for all xi

5
t k
ayl’=§:akyi{ ’>0
k=0

« Need to stop but at a good point
- Will not converge in the nonseparable

case
- To ensure convergence can set S S S
(1)
n*) = 7
k

- However we are not guaranteed that
we will stop at a good point
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Convergence of Perceptron Rules

- If classes are linearly separable and we use fixed learning
rate, that is for m (k) =const

- Then, both the single sample and batch perceptron rules
converge to a correct solution (could be any a in the
solution space)

- If classes are not linearly separable:

— The algorithm does not stop, it keeps looking for a solution which
does not exist

— By choosing appropriate learning rate, we can always
ensure convergence:
— For example inverse linear learning rate:

— For inverse linear learning rate, convergence in the linearly
separable case can also be proven

— No guarantee that we stopped at a good point, but there are good
reasons to choose inverse linear learning rate
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Perceptron Rule and Gradient decent

« Linearly separable data
—perceptron rule with gradient decent works well
« Linearly non—separable data

—need to stop perceptron rule algorithm at a good point,
this maybe tricky

Batch Rule Single Sample Rule
= Smoother gradient = easier to analyze
because all samples are
used

= Concentrates more than
necessary on any isolated
“noisy” training examples
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Outline

- Perceptron Rule

« Minimum Squared-Error Procedure

« Ho—Kashyap Procedure
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Minimum Squared-Error Procedures

- ldea: convert to easier and better understood problem

a'y; > 0 for all samples y;
solve system of linear inequalities

4

a'y;= b, for all samples y;
solve system of linear equations

- MSE procedure
— Choose positive constants b1, ba,..., bn
— Try to find weight vector a such that at yi = bi for all samples vyi

— If we can find such a vector, then a is a solution because the bi’s
are positive

— Consider all the samples (not just the misclassified ones)
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MSE Margins

If aly;=Db;, yi must be at distance bi from the separating
hyperplane (normalized by ||a||)

Thus b1, b2,..., bn give relative expected distances or
“margins” of samples from the hyperplane

Should make bi small if sample i is expected to be near
separating hyperplane, and large otherwise

In the absence of any additional information, set b1 = b2
=...=bn=1




MSE Matrix Notation

at.V1 = b1
« Need to solve n equations E
a'y,=b,
« |In matrix form Ya=b

© 0y b ]
) (1) . @ || b
2 2 2 a |_ 2
© ) ... @ £ _5,,_
- n n n |
8 J\ J \ )
Y Y Y
Y a b
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Exact Solution is Rare

« Need to solve a linear system Ya =D
— Y is an nx(d +1) matrix
- Exact solution only if Y is non-singular and square
(the inverse Y-1exists)
—a=Y'b
— (number of samples) = (number of features + 1)
— Almost never happens in practice
— Guaranteed to find the separating hyperplane
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Approximate Solution

- Typically Y is overdetermined, that is it has more rows
(examples) than columns (features)

— If it has more features than examples, should reduce
dimensionality

- Need Ya = b, but no exact solution exists for an
overdetermined system of equations

— More equations than unknowns
- Find an approximate solution

— Note that approximate solution a does not necessarily give the
separating hyperplane in the separable case

— But the hyperplane corresponding to a may still be a good
solution, especially if there is no separating hyperplane




MSE Criterion Function

- Minimum squared error approach: find a which

minimizes the length of the error vector e b
e
e=Ya-b <
Ya

- Thus minimize the minimum squared error criterion
function:

J,(a)=|Ya-bff = (a'y,~ b,

=1

- Unlike the perceptron criterion function, we can
optimize the minimum squared error criterion function
analytically by setting the gradient to 0




Computing the Gradient

(a)=|va-bf —Z(ay, b,

T
G | gy o g

vi(a)=| : 2NV Elaty b
oa,
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Pseudo-Inverse Solution

vJ. (a)=2Y'(Ya-b)
« Setting the gradient to 0:

2Y'(Ya-b)=0 = Y'Ya=Y'b

+ The matrix Y'Y is square (it has d +1 rows and
columns) and it is often non—singular

- If YtY is non—singular, its inverse exists and we can
solve for a uniquely:

a=(v'v)'vp
pseudo inverse of Y
k(v'v)“v')v —(yy)'(v'y)=1
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MSE Procedures

- Only guaranteed separating hyperplane if Ya = 0
— That is if all elements of vector Ya are positive

B
Ya= :
b,+e¢,
— where € may be negative
« If €1,...,en are small relative to bi,..., bn, then each
element of Ya is positive, and a gives a separating

hyperplane

— If the approximation is not good, &imay be large and negative, for
some i, thus bi + £ iwill be negative and a is not a separating

hyperplane
- In linearly separable case, least squares solution a does
not necessarily give separating hyperplane




MSE Procedures

- We are free to choose b. We may be tempted to make b
large as a way to ensure Ya =b > 0

— Does not work
— Let B be a scalar, let's try B b instead of b

- If a* is a least squares solution to Ya = b, then for any
scalar B, the least squares solutionto Ya= Bbis 3 a*

arg min|Ya— ﬁb||2 =argminp?|Y(a/B)-b|" = pa*

- Thus if the i—th element of Ya is less than 0, that is yia < 0,
then yi(Ba)< 0

— The relative difference between components of b matters, but not
the size of each individual component




LDF using MSE: Example 1

« Class 1: (6 9),(57)
« Class 2: (59), (0 4)
- Add extra feature and “normalize”

- o (=] | o o

(5]

0 1 2 3 4 5 8

SHESUREEREE/
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LDF using MSE: Example 1

- Choose b=[1111]T :

- In Matlab, a=Y\b solves the least
squares problem

[ 2,66 | |
a=| 1.045 : . ' > !
| —0.944 |
Note a is an approximation to Ya = b, (0.44 |
since no exact solution exists e 1.28
This solution gives a separating 0.61
hyperplane since Ya > 0 Pl
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LDF using MSE: Example 2

10 .
Class 1: (6 9), (5 7) i e
Class 2: (5 9),(0 10) i
The last sample is very far compared to , ~

others from the separating hyperplane

5% o0 1 2 3 4 5 8

g el o

N ©

P2
¥=| 1 -5 —9
1 0
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LDF using MSE: Example 2

« Choose b=[1111]T

« In Matlab, a=Y\b solves the least ©voom
squares problem . .
T 027 [T
3.2 | 09| |1 :
a=| 0.2 Ya= _0.02!%!|1 .
-0.4 1.16| |1 ? o

]
E.?z

« This solution does not provide a separating
hyperplane since aly;<0
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LDF using MSE: Example 2

- MSE pays too much attention to isolated “noisy”

examples
— such examples are called outliers

MSE solution

il
outlier .

".. desired solution

*

- No problems with convergence
- Solution ranges from reasonable to good
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LDF using MSE: Example 2

- We can see that the 4—th point is
vary far from separating hyperplane

10-

— In practice we don’t know this BN :
- A more appropriate b could be b = ; )
In Matlab, a=Y\b solves the 10 )
least squares problem ¥ S
- 09] [1
-1.1
a={ 1.7] Ya = 1.0 £ 1
—_0.9 0.8 1
10.0| |10]

This solution gives the separating
hyperplane since Ya > 0
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Gradient Descent for MSE

J,(a)=|Ya- b

- May wish to find MSE solution by gradient descent:

1. Computing the inverse of YtY may be too costly

2. YYY may be close to singular if samples are highly
correlated (rows of Y are almost linear combinations of

each other) computing the inverse of Y is not
numerically stable

- As shown before, the gradient is:

vJd.(a)=2Y'(Ya-b)




Widrow-Hoft Procedure

vd.(a)=2Y'(Ya-b)
- Thus the update rule for gradient descent is:
g+ — (k) _ n‘*)Y'(Ya(") _ b)

If nW=nM/k, then a® converges to the MSE solution a, that
s YY{(Ya-b)=0

The Widrow-Hoff procedure reduces storage
requirements by considering single samples sequentially

440 - ), (y1a) - b)
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Outline

- Perceptron Rule

«  Minimum Squared-Error Procedure

« Ho—Kashyap Procedure
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Ho-Kashyap Procedure

In the MSE procedure, if b is chosen arbitrarily, finding
separating hyperplane is not guaranteed.

Suppose training samples are linearly separable. Then there
is a° and positive p° s.t.

Ya*=b">0

If we knew b* could apply MSE procedure to find the
separating hyperplane

Idea: find both a°and b®
Minimize the following criterion function, restricting to

positive b:
J.i(a,b)=|Ya- b
Ju(as,bs)=0




Ho-Kashyap Procedure

JHK(a5 b) = HYa - bH2

- As usual, take partial derivatives w.r.t. a and b

V.J,=2Y(Ya-b)=0
V,J. =—2(Ya-b)=0

- Use modified gradient descent procedure to find a
minimum of Jxk(a,b)

« Alternate the two steps below until convergence:
@ Fix b and minimize Juk(a,b) with respect to a
2 Fix a and minimize Juk(a,b) with respect to b




Ho-Kashyap Procedure

V.J., =2Y'(Ya-b)=0 V,Ju=-2(Ya-b)=0

« Alternate the two steps below until convergence:
@ Fix b and minimize Juk(a,b) with respect to a
2 Fix a and minimize Juk(a,b) with respect to b

- Step (1) can be performed with pseudoinverse

—For fixed b minimum of JHK(a,b) with respect to a is
found by solving

2Y'(Ya-b)=0
—Thus

a=(Y'Y)'Y'b




Ho-Kashyap Procedure

- Step 2: fix a and minimize Juk(a,b) with respect to b
« We can’t use b = Ya because b has to be positive

- Solution: use modified gradient descent

- Regular gradient descent rule:

pk+) — pk) _ ﬂ(k]Vb J(a“‘), b“‘))

- If any components of <3 are positive, b will decrease
and can possibly become negative

1 ool [
b =(1|-2% -3
1 -2

Il
OINW




Ho-Kashyap Procedure

- Start with positive b , follow negative gradient but
refuse to decrease any components of b

- This can be achieved by setting all the positive
components of vpd t0 0

plk+1) — plk) _ ﬂ%[VbJ(a(k),b(k)) _ /VbJ(a("),b(“))/]

here |v| denotes vector we get after applying absolute
value to all elements of v

ST VR

- Not doing steepest descent anymore, but we are still
doing descent and ensure that b is positive




Ho-Kashyap Procedure

plk+?) = p(k) ”%[V (@, 6®) - v, d(a®,6®) |

V,J=-2(Ya-b)=0

ot o) _ yak) _ po) _ _1VJD (a%), p®)
2

Then

b+ = pk) _ gy % [-2e®) _ |2¢ ||

— p) 4 ”[e(k) +| e® |]
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Ho-Kashyap Procedure

- The final Ho—Kashyap procedure:

0) Start with arbitrary a™ and b("> 0, letk = 1
repeat steps (12 through (4)
1) e =ya" - p¥®
2) Solve for b*+1) ysing a® and b®
plk+t) = pk) 4 W[e(k) +] e'k) |]

3) Solve for atk+1) using blk+1)
a(k+1] = (Yty) —1yt b(k+1]

4) k=Kk + 1
until e >=0 or k> k,,,, or bk+?) = p(k

- For convergence, learning rate should be fixed

between 0 < m < 1.
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Ho-Kashyap Procedure

pl+) — plk) 4 ”[e(k) +] e'v) I]
- What if e®) is negative for all components ?

bk+1) = bk} and corrections stop

« Write e out:

e®=va®-p® —y(y'y)y'p® _ p®
- Multiply by Y! :

yie® = y!y(vty)'y'b® - p®) = y'p® _ytp® =g
- Thus

Yielk = 0
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Ho-Kashyap Procedure

« Suppose training samples are linearly separable.
Then there is a®and positive b> s.t

Ya’ =b’ >0
- Multiply both sides by (e®)t
0=(e“)va® =(e") b’

- Either by o = g or one of its components is positive
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Ho-Kashyap Procedure

 In the linearly separable case,
—e“= o found solution, stop
— one of components of eX’is positive, algorithm continues

« |n non separable case,

— e will have only negative components eventually, thus
found proof of nonseparability

— No bound on how many iteration need for the proof of
nonseparability
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Example

« Class 1: (6,9), (5,7) U
- Class 2: (5,9),(0, 10) . e
1 6 9 l
- Matrix vy=| _1 2 7
-1 0-10 7 &
1 1] S NE AN N
Start with a™” = 1| and p" - ;
1

- Use fixed learningn = 0.9

« At the start " 167

@ _| 13
Ya'' = _15
- 11]
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Example

- |teration 1:
EUNLE
1) _ val) _ p0) _ _
e’—Ya'—bf—_.,s—? -'_16
-11] [1] [|-12]

- solve for b‘? using a') and b'"

1
b® = b + 0.9l +/e" || = H +0.9
1

157 [15 28

| 12],[12]|-|22:6
-16 16 1
—12| |12 1

- solve for a®) using b

28
26 47 16-05 34.6
a? =(y'y)'y'b? =| 0.16 0.1 -0.1 0.2|*|%%|-| “27
0.26 - 0.5 —0.2 - 0.1 Hl-28
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Example

- Continue iterations until Ya >0 -
— In practice, continue until minimum He
component of Ya is less than 0.01 g
- After 104 iterations converged to ? 8 *
solution —
- 34.9 28
a=[ 27.3} b=| 2
- 11-3 _147_
- a does gives a separating hyperplane
Ya=\0.14
1 1.48 |
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LDF Summary

- Perceptron procedures
— Find a separating hyperplane in the linearly separable case,
— Do not converge in the non—-separable case

— Can force convergence by using a decreasing learning rate, but are not
guaranteed a reasonable stopping point

-  MSE procedures
— Converge in separable and not separable case
— May not find separating hyperplane even if classes are linearly
separable
— Use pseudoinverse if YtY is not singular and not too large
— Use gradient descent (Widrow—Hoff procedure) otherwise

- Ho-Kashyap procedures
— always converge
— find separating hyperplane in the linearly separable case
— more costly

ECSE-6610 Pattern Recognition



Lecture 10 February 17, 2018



