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Recap Previous Lecture



C. Long Lecture 10 February 17, 2018 3

Outline

• Perceptron Rule

• Minimum Squared-Error Procedure

• Ho-Kashyap Procedure
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"Dual" Problem

Seek a hyperplane that 
separates patterns from 
different categories

Seek a hyperplane that puts 
normalized patterns on the 
same (positive) side

Classification rule: 
 If αtyi>0 assign yi to ω1
 else if αtyi<0 assign yi to ω2
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Perceptron rule
• Use Gradient Descent assuming that the error function to be 

minimized is:
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the set of samples 
misclassified by α.

• If Y(α) is empty, Jp(α)=0; otherwise, Jp(α) ≥ 0.

• Jp(α) is ||α|| times the sum of distances of misclassified.

• Jp(α) is is piecewise linear and thus suitable for gradient descent.
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Perceptron Batch Rule

• The gradient of Jp(α) is:
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• The perceptron update rule is obtained using gradient 
descent:
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• It is not possible to solve analytically         0.

• It is called batch rule because it is based on all misclassified 
examples
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Perceptron Single Sample Rule

• The gradient decent single sample rule for Jp(a) is:

– Note that yM is one sample misclassified by 
– Must have a consistent way of visiting samples

• Geometric Interpretation:
– Note that yM is one sample misclassified 
by
– yM is on the wrong side of decision 
hyperplane
– Adding ηyM to a moves the new decision 
hyperplane in the right direction with 
respect to yM
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Perceptron Single Sample Rule
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Perceptron Example

• Class 1: students who get A
• Class 2: students who get F
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Perceptron Example

• Augment samples by adding an extra feature (dimension) 
equal to 1
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Perceptron Example

• Normalize:
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Perceptron Example

• Single Sample Rule:
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Perceptron Example

• Set equal initial weights

• Visit all samples sequentially, modifying the weights 
after each misclassified example

• New weights
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Perceptron Example

• New weights
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Perceptron Example

• New weights
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Perceptron Example

• Thus the discriminant function is:

• Converting back to the original features x:
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Perceptron Example

• Converting back to the original features x:

• This is just one possible solution vector.

• In this solution, being tall is the least important feature

• If we started with weights                           , the 
solution would be [-1,1.5, -0.5, -1, -1]
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LDF: Non-separable Example

• Suppose we have 2 features and the samples are:
– Class 1: [2,1], [4,3], [3,5]
– Class 2: [1,3] and [5,6]

• These samples are not separable by a line
• Still would like to get approximate separation by a line

– A good choice is shown in green
– Some samples may be “noisy”, and we could accept them being 
misclassified
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LDF: Non-separable Example

• Obtain y1, y2, y3, y4 by adding extra feature and 
“normalizing”
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LDF: Non-separable Example

• Apply Perceptron single sample algorithm
• Initial equal weights

• Fixed learning rate
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LDF: Non-separable Example
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LDF: Non-separable Example



C. Long Lecture 10 February 17, 2018 24

LDF: Non-separable Example
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LDF: Non-separable Example
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LDF: Non-separable Example

• We can continue this forever.
• There is no solution vector a satisfying for all  xi

• Need to stop but at a good point
• Will not converge in the nonseparable 

case
• To ensure convergence can set

• However we are not guaranteed that 
we will stop at a good point
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Convergence of Perceptron Rules

• If classes are linearly separable and we use fixed learning 
rate, that is for η(k) =const

• Then, both the single sample and batch perceptron rules 
converge to a correct solution (could be any a in the 
solution space)

• If classes are not linearly separable:
– The algorithm does not stop, it keeps looking for a solution which 
does not exist
– By choosing appropriate learning rate, we can always
ensure convergence:
– For example inverse linear learning rate:
– For inverse linear learning rate, convergence in the linearly 
separable case can also be proven
– No guarantee that we stopped at a good point, but there are good 
reasons to choose inverse linear learning rate
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Perceptron Rule and Gradient decent

• Linearly separable data
-perceptron rule with gradient decent works well

• Linearly non-separable data
-need to stop perceptron rule algorithm at a good point, 
this maybe tricky
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Outline

• Perceptron Rule

• Minimum Squared-Error Procedure
• Ho-Kashyap Procedure
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Minimum Squared-Error Procedures

• Idea: convert to easier and better understood problem

• MSE procedure
– Choose positive constants b1, b2,…, bn

– Try to find weight vector a such that at yi = bi for all samples yi

– If we can find such a vector, then a is a solution because the bi’s 
are positive
– Consider all the samples (not just the misclassified ones)
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MSE Margins

• If            , yi must be at distance bi from the separating 
hyperplane (normalized by ||a||)

• Thus b1, b2,…, bn give relative expected distances or 
“margins” of samples from the hyperplane

• Should make bi small if sample i is expected to be near 
separating hyperplane, and large otherwise

• In the absence of any additional information, set b1 = b2 
=… = bn = 1
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MSE Matrix Notation

• Need to solve n equations

• In matrix form Ya=b
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Exact Solution is Rare

• Need to solve a linear system Ya = b
– Y is an n×(d +1) matrix

• Exact solution only if Y is non-singular and square 
(the inverse      exists)
– a =    b
– (number of samples) = (number of features + 1)
– Almost never happens in practice
– Guaranteed to find the separating hyperplane
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Approximate Solution

• Typically Y is overdetermined, that is it has more rows 
(examples) than columns (features)
– If it has more features than examples, should reduce 
dimensionality

• Need Ya = b, but no exact solution exists for an 
overdetermined system of equations
– More equations than unknowns

• Find an approximate solution
– Note that approximate solution a does not necessarily give the 
separating hyperplane in the separable case
– But the hyperplane corresponding to a may still be a good 
solution, especially if there is no separating hyperplane
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MSE Criterion Function

• Minimum squared error approach: find a which 
minimizes the length of the error vector e

• Thus minimize the minimum squared error criterion 
function:

• Unlike the perceptron criterion function, we can 
optimize the minimum squared error criterion function 
analytically by setting the gradient to 0
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Computing the Gradient



C. Long Lecture 10 February 17, 2018 37

Pseudo-Inverse Solution

• Setting the gradient to 0:

• The matrix       is square (it has d +1 rows and 
columns) and it is often non-singular

• If       is non-singular, its inverse exists and we can 
solve for a uniquely:
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MSE Procedures

• Only guaranteed separating hyperplane if Ya ≥ 0
– That is if all elements of vector Ya are positive

• If ε1,…,εn are small relative to b1,…, bn, then each 
element of Ya is positive, and a gives a separating 
hyperplane
– If the approximation is not good, εi may be large and negative, for 
some i, thus bi +εi will be negative and a is not a separating 
hyperplane

• In linearly separable case, least squares solution a does 
not necessarily give separating hyperplane

– whereεmay be negative
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MSE Procedures

• We are free to choose b. We may be tempted to make b 
large as a way to ensure Ya =b > 0
– Does not work
– Let β be a scalar, let’s try βb instead of b

• If a* is a least squares solution to Ya = b, then for any 
scalar β, the least squares solution to Ya = βb is βa*

• Thus if the i-th element of Ya is less than 0, that is      < 0, 
then         < 0
– The relative difference between components of b matters, but not 
the size of each individual component
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LDF using MSE: Example 1

• Class 1: (6 9), (5 7)
• Class 2: (5 9), (0 4)
• Add extra feature and “normalize”
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LDF using MSE: Example 1

• Choose 
• In Matlab, a=Y\b solves the least 

squares problem

• Note a is an approximation to Ya = b, 
since no exact solution exists

• This solution gives a separating 
hyperplane since Ya > 0
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LDF using MSE: Example 2

• Class 1: (6 9), (5 7)
• Class 2: (5 9), (0 10)
• The last sample is very far compared to 

others from the separating hyperplane
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LDF using MSE: Example 2

• Choose 
• In Matlab, a=Y\b solves the least 

squares problem

• This solution does not provide a separating 
hyperplane since 
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LDF using MSE: Example 2

• MSE pays too much attention to isolated “noisy” 
examples
– such examples are called outliers

• No problems with convergence
• Solution ranges from reasonable to good
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LDF using MSE: Example 2

• We can see that the 4-th point is 
vary far from separating hyperplane
– In practice we don’t know this

• A more appropriate b could be
• In Matlab, a=Y\b solves the 

least squares problem

• This solution gives the separating 
hyperplane since Ya > 0 
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Gradient Descent for MSE

• May wish to find MSE solution by gradient descent:
1. Computing the inverse of       may be too costly
2.        may be close to singular if samples are highly 

correlated (rows of Y are almost linear combinations of 
each other) computing the inverse of       is not 
numerically stable

• As shown before, the gradient is:
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Widrow-Hoff Procedure

• Thus the update rule for gradient descent is:

• If               , then      converges to the MSE solution a, that 
is 

• The Widrow-Hoff procedure reduces storage 
requirements by considering single samples sequentially
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Outline

• Perceptron Rule

• Minimum Squared-Error Procedure

• Ho-Kashyap Procedure
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Ho-Kashyap Procedure

• In the MSE procedure, if b is chosen arbitrarily, finding 
separating hyperplane is not guaranteed.

• Suppose training samples are linearly separable. Then there 
is       and positive        s.t.

• If we knew      could apply MSE procedure to find the 
separating hyperplane

• Idea: find both     and    
• Minimize the following criterion function, restricting to 

positive b:
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Ho-Kashyap Procedure

• As usual, take partial derivatives w.r.t. a and b

• Use modified gradient descent procedure to find a 
minimum of JHK(a,b)

• Alternate the two steps below until convergence:
① Fix b and minimize JHK(a,b) with respect to a
② Fix a and minimize JHK(a,b) with respect to b
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Ho-Kashyap Procedure

• Step (1) can be performed with pseudoinverse
-For fixed b minimum of JHK(a,b) with respect to a is 
found by solving

-Thus

• Alternate the two steps below until convergence:
① Fix b and minimize JHK(a,b) with respect to a
② Fix a and minimize JHK(a,b) with respect to b
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Ho-Kashyap Procedure

• Step 2: fix a and minimize JHK(a,b) with respect to b
• We can’t use b = Ya because b has to be positive
• Solution: use modified gradient descent
• Regular gradient descent rule:

• If any components of        are positive, b will decrease 
and can possibly become negative
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Ho-Kashyap Procedure

• Start with positive b , follow negative gradient but 
refuse to decrease any components of b

• This can be achieved by setting all the positive 
components of       to 0

here |v| denotes vector we get after applying absolute
value to all elements of v

• Not doing steepest descent anymore, but we are still 
doing descent and ensure that b is positive
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Ho-Kashyap Procedure

Let

Then
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Ho-Kashyap Procedure

• The final Ho-Kashyap procedure:

• For convergence, learning rate should be fixed 
between 0 < η < 1.
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Ho-Kashyap Procedure

• What if       is negative for all components?
                       and corrections stop

• Write       out:

• Multiply by      :

• Thus
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Ho-Kashyap Procedure

• Suppose training samples are linearly separable. 
Then there is     and positive      s.t

• Multiply both sides by 

• Either by              or one of its components is positive 
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Ho-Kashyap Procedure

• In the linearly separable case,
-       = 0, found solution, stop
- one of components of      is positive, algorithm continues

• In non separable case,
-         will have only negative components eventually, thus 
found proof of nonseparability
- No bound on how many iteration need for the proof of 
nonseparability
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Example

• Class 1: (6,9), (5,7)
• Class 2: (5,9), (0, 10)

• Matrix

• Use fixed learning η = 0.9 

• Start with                  and

• At the start 
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Example

• Iteration 1:

• solve for        using        and   

• solve for        using  
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Example

• Continue iterations until Ya > 0
- In practice, continue until minimum 
component of Ya is less than 0.01

• After 104 iterations converged to 
solution 

• a does gives a separating hyperplane 
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LDF Summary

• Perceptron procedures
– Find a separating hyperplane in the linearly separable case,
– Do not converge in the non-separable case
– Can force convergence by using a decreasing learning rate, but are not 
guaranteed a reasonable stopping point

• MSE procedures
– Converge in separable and not separable case
– May not find separating hyperplane even if classes are linearly 
separable
– Use pseudoinverse if        is not singular and not too large
– Use gradient descent (Widrow-Hoff procedure) otherwise

• Ho-Kashyap procedures
– always converge
– find separating hyperplane in the linearly separable case
– more costly
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