Generalized Pursuit Learning Schemes : New Families of Continuous and Discretized Learning Automata

Mariana Agache and B. John Oommen

Abstract

 The fastest Learning Automata (LA) algorithms currently available fall in the family of Estimator Algorithms introduced by Thathachar and Sastry [24]. The pioneering work of these authors was the Pursuit Algorithm, which pursues only the current estimated optimal action. If this action is not the one with the minimum penalty probability, this algorithm pursues a wrong action. In this paper, we argue that a Pursuit scheme that generalizes the traditional Pursuit Algorithm by pursuing all the actions with higher reward estimates than the chosen action, minimizes the probability of pursuing a wrong action, and is a faster converging scheme. To attest this, in this paper we present two new generalized Pursuit algorithms and also present a quantitative comparison of their performance against the existing Pursuit algorithms. Empirically, the algorithms proposed here are among the fastest reported LA to-date.

Keywords: Learning Automata, Estimator Algorithms, Pursuit Algorithms

I. Introduction

The goal of a Learning Automaton (LA) is to determine the optimal action out of a set of allowable actions, where the optimal action is defined as the action that maximizes the probability of being rewarded. The fastest LA algorithms to-date fall within the family of the so-called Estimator Algorithms. From this family, the pioneering work of Thathachar and Sastry [24] was the Pursuit Algorithm, which pursues only the current estimated optimal action. If this action is not the one with the minimum penalty probability, this algorithm pursues a wrong action. In this paper, we present various generalizations of the above philosophy. Quite simply stated : We demonstrate that a Pursuit scheme, which generalizes the traditional Pursuit algorithm by pursuing all the actions with higher reward estimates than the chosen action, minimizes the probability of pursuing a wrong action, thus leading to a faster converging scheme. Based on this fundamental premise, we devise new pursuit LA which, empirically, are probably the fastest and most accurate reported LA to-date.

I.1. Fundamentals of Learning Automata

The functionality of the learning automaton can be described in terms of a sequence of repetitive feedback cycles in which the automaton interacts with the environment. During a cycle, the automaton chooses an action, which triggers a response from the environment, a response that can be either a reward or a penalty. The automaton uses this response and the knowledge acquired in the past actions to determine which is the next action. By learning to choose the optimal action, the automaton adapts itself to the environment. Excellent books that survey the field are the books by Lakshmivarahan [2], Narendra and Thathachar [9] and Najim and Poznyak [31].

The learning paradigm as modeled by LA has found applications in systems that posses incomplete knowledge about the environment in which they operate. A variety of applications
 that use LA have been reported in the literature. They have been used in game playing [1], [2], [3], pattern recognition [10], [21], object partitioning [17], [18], parameter optimization [9], [28], [35], [54] and multi-objective analysis [43], telephony routing [11], [12], priority assignments in a queuing system [7]. They have also been used in statistical decision making [9], [31], distribution approximation [40], natural language processing, modeling biological learning systems [26], string taxonomy [56], graph partitioning [57], distributed scheduling [39], network protocols (including conflict avoidance [44]) for LANs [36], photonic LANs [45], star networks [37] and broadcast communication systems [38], dynamic channel allocation [38], tuning PID controllers [30], assigning capacities in prioritized networks [32], map learning [41], digital filter design [42], controlling client/server systems [46], adaptive signal processing [49], vehicle path control [50], and even the control of power systems [51] and vehicle suspension systems [52].

The beauty of incorporating LA in any particular application domain, is indeed, the elegance of the technology. Essentially, LA are utilized exactly as one would expect - by interacting with the “Environment” - which is the system from which the LA learns. For example, in parameter optimization the LA chooses a parameter, observes the effect of the parameter in the control loop, and then updates the parameter to optimize the objective function, where this updating is essentially achieved by the LA's stochastic updating rule. The details of how this is achieved in the various application domains involves modeling the "actions", transforming the system's outputs so that they are perceived to be of a reward or penalty flavor. This where the ingenuity of the researcher comes into the picture - this is often a thought-provoking task. Although we have interests in the application of LA, this paper is intended to be of a theoretical sort. Thus, our discussions on the applications of LA are necessarily brief !

In the first LA designs, the transition and the output functions were time invariant, and for this reason these LA were considered “fixed structure” automata. Tsetlin, Krylov, and Krinsky [25], [26] presented notable examples of this type of automata. Later, in [27], Vorontsova and Varshavskii introduced a class of stochastic automata known in literature as Variable Structure Stochastic Automata (VSSA). In the definition of a Variable Structure Stochastic Automaton (VSSA), the LA is completely defined by a set of actions (one of which is the output of the automata), a set of inputs (which is usually the response of the environment) and a learning algorithm, T. The learning algorithm [2], [4], [9] operates on a vector (called the Action Probability vector)

P(t) =[p1(t),…,pr(t)]T,

where pi(t) (i = 1,…,r) is the probability that the automaton will select the action (i at the time t:

pi(t)=Pr[((t)= (i], i=1,…,r, and it satisfies,

[image: image1.wmf]å

=

=

r

1

i

i

1

)

t

(

p

for all ‘t’.

Note that the algorithm T : [0,1]r(A(B([0,1]r is an updating scheme where A={(1, (2,…,(r}, 2(r<(, is the set of output actions of the automaton, and B is the set of responses from the environment. Thus, the updating is such that

P(t+1) = T(P(t), (t), (t)),

 (1)

where (t) is the response that the LA receives from the Environment. These terms will be formalized presently, but is well-acclaimed in the LA literature.

If the mapping T is chosen in such a manner that the Markov process has absorbing states, the algorithm is referred to as an absorbing algorithm. Families of VSSA that posses absorbing barriers have been studied in [4], [8], [9], [10]. Ergodic VSSA have also been investigated [2], [9], [10], [13]. These VSSA converge in distribution and thus, the asymptotic distribution of the action probability vector has a value that is independent of the corresponding initial vector. Thus, while ergodic VSSA are suitable for non-stationary environment, automata with absorbing barriers are preferred in stationary environments.

In practice, the relatively slow rate of convergence of these algorithms constituted a limiting factor in their applicability. In order to increase their speed of convergence, the concept of discretizing the probability space was introduced in [22]. This concept is implemented by restricting the probability of choosing an action to a finite number of values in the interval [0,1]. If the values allowed are equally spaced in this interval, the discretization is said to be linear, otherwise, the discretization is called non-linear. Following the discretization concept, many of the continuous VSSA have been discretized; indeed, various discrete automata have been presented in literature [13], [15].

In the quest to design faster converging learning algorithms, Thathachar and Sastry [23] opened another avenue by introducing a new class of algorithms, called “Estimator” Algorithms. The main feature of these algorithms is that they maintain running estimates for the reward probability of each possible action, and use them in the probability updating equations. Typically, in the first step of the functional cycle, the automaton chooses an action and the environment generates a response to this action. Based on this response, the Estimator Algorithm updates the estimate of the reward probability for that action. The change in the action probability vector is based on both the running estimates of the reward probabilities, and on the feedback received from the environment. Thus, in essence, within the family of estimator algorithms, the LA's updating rule is of the form :

Q(t+1) = T(Q(t), (t), (t)),

where Q(t) is the pair <P(t),
[image: image2.wmf](t)

ˆ

d

>, and
[image: image3.wmf](t)

ˆ

d

 is the vector of estimates of the reward probabilities d.

A detailed catalogue of the estimator algorithms can be found in [5], [6], [16], [23], [24], [33], [34] and [47]. Historically, as mentioned earlier, these algorithms were pioneered by Thathachar and Sastry, who introduced the continuous versions. Oommen and his co-authors [5], [16] discretized them, thus enhancing them both with regard to speed and accuracy. Papadimitriou [33], [34] introduced the concept of stochastic estimator algorithms and recommended the use of windows for the estimates. He also used the non-linear discretized version in a brilliant hierarchical manner for dealing with scenarios with a large number of actions. The most recent work in this field is the work that we have done in [20] - which will be explained in greater detail presently.

Most of the analysis has centered around the (-optimality of the corresponding LA, although the LA described in [34] have been proven to only possess the property of absolute expediency. However, we commend the excellent work of Rajaraman and Sastry [47] which is the only known finite time analysis for any of the estimator algorithms.
I.2. Contribution of this paper
As mentioned above, Pursuit algorithms are a subset of the Estimator algorithms. The existing Pursuit algorithms are characterized by the fact that the action probability vector ‘pursues’ the action that is currently estimated to be the optimal action. This is achieved by increasing the probability of the action whose current estimate of being rewarded is maximal [16], [24]. This implies that if, at any time ‘t’, the action that has the maximum reward estimate is not the action that has the minimum penalty probability, then the automaton pursues a wrong action. Our primary goal here is to minimize this probability of pursuing an erroneous action. It is pertinent to mention that the effect of minimizing this probability of erroneous Pursuit leads to both faster and more accurate schemes, as we shall see. Furthermore, such a pursuit also leads to a new class of pseudo-discretized Pursuit automata that are distinct from all the previously reported discretized LA. These contributions will be clear in the subsequent sections.

We achieve this our goal by generalizing the design of the Pursuit algorithm by permitting it to pursue a set of actions
 instead of a single "current-best" action. Specifically, the set of actions pursued are those actions that have higher reward estimates than the current chosen action. In this paper, we introduce two new Pursuit algorithms, a continuous and a discretized version, that use such a generalized "pursuit" learning approach. Apart from proving their learning properties, we also demonstrate their superiority over traditional pursuit and estimator schemes by means of extensive simulation results. The new algorithms presented here are among the best reported, and we believe represent the state of the art !
II. Pursuit Algorithms

Thathachar and Sastry introduced the concept of Pursuit Algorithms [24] by presenting a continuous Pursuit algorithm that used a Reward-Penalty learning paradigm, denoted CPRP. Later, in 1990, Oommen and Lanctôt [16] introduced the first discretized Pursuit estimator algorithm by presenting a discretized version, denoted DPRI, that uses a Reward-Inaction learning paradigm. In [20], Oommen and Agache explored all Pursuit algorithms that resulted from the combination of the continuous and discrete probability space with the Reward-Penalty and Reward-Inaction learning paradigms, and introduced two new Pursuit algorithms, the Continuous Reward-Inaction Pursuit Algorithm (CPRI) and the Discretized Reward-Penalty Pursuit Algorithm (DPRP). In the interest of brevity, we shall present in this paper only the CPRP and the DPRI algorithms, which are currently recognized as the benchmark Pursuit Schemes.

II.1. The Continuous Pursuit Reward-Penalty (CPRP) Algorithm

The pioneering Pursuit algorithm, the Continuous Pursuit algorithm, was introduced by Thathachar and Sastry [24]. We present it here in all brevity. This algorithm uses a Reward-Penalty learning paradigm, meaning that it updates the probability vector P(t), if the Environment rewards or penalizes the chosen action. For this reason, we shall refer to it as the Continuous Pursuit Reward-Penalty (CPRP) algorithm. The CPRP algorithm involves three steps [24]. The first step consists of choosing an action ((t) based on the probability distribution P(t). Whether the automaton is rewarded or penalized, the second step is to increase the component of P(t) whose reward estimate is maximal (the current optimal action), and to decrease the probability of all the other actions. From a vector perspective, the probability updating rules can be expressed as follows:

P(t+1) = (1-) P(t) +  em

 (2)

where em is the unit vector [0 … 1… 0]T with the position of unity representing the currently estimated “best” action, namely, the action with the maximal reward estimate. This equation shows that the action probability vector P(t) is moved in the direction of the action with the current maximal reward estimate, direction given by the vector em.

The last step is to update the running estimates for the probability of being rewarded. For calculating the vector with the reward estimates denoted by
[image: image4.wmf](t)

ˆ

d

, two more vectors are introduced: W(t) and Z(t), where Zi(t) is the number of times the ith action has been chosen and Wi(t) is the number of times the action (i has been rewarded. Formally, the algorithm can be described as follows.

ALGORITHM CPRP

Parameters

(
the speed of learning parameter , where 0<(<1.

m
index of the maximal component of the reward estimate vector

[image: image5.wmf](t)}

d

ˆ

{

max

(t)

d

ˆ

(t),

ˆ

i

,..,r

1

i

m

=

=

d

.

em
unit r-vector with 1 in the mth coordinate

Wi(t)
the number of times the ith action has been rewarded up to time t, for 1(i(r.

Zi(t)
the number of times the ith action has been chosen up to time t, for 1 (i(r.

Notation : ((t) ({0,1} is the response from the Environment
Method

Initialize pi(t)=1/r, for 1(i(r

Initialize
[image: image6.wmf])

t

(

ˆ

d

 by choosing each action a small number of times.

Repeat

Step 1: At time t pick ((t) according to probability distribution P(t). Let ((t)= (i.

Step 2: If (m is the action with the current highest reward estimate, update P(t) as :

P(t+1) = (1-) P(t) +  em

 (3)

Step 3: Update
[image: image7.wmf])

t

(

ˆ

d

according to the following equations for the action chosen:

[image: image8.wmf](

)

)

1

t

(

Z

)

1

t

(

W

)

1

t

(

d

ˆ

1

)

t

(

Z

)

1

t

(

Z

)

t

(

1

)

t

(

W

)

1

t

(

W

i

i

i

i

i

i

i

+

+

=

+

+

=

+

b

-

+

=

+

 (4)

End Repeat

END ALGORITHM CPRP

The CPRP algorithm is similar in design to the LRP algorithm, in the sense that both algorithms modify the action probability vector P(t), if the response from the environment is a reward or a penalty. The difference occurs in the way they approach the solution; whereas the LRP algorithm moves P(t) in the direction of the most recently rewarded action or in the direction of all the actions not penalized, the CPRP algorithm moves P(t) in the direction of the action which has the highest reward estimate.

In [24], Thathachar and Sastry proved that this algorithm is (-optimal in any stationary random environment. In the context of this paper, we shall merely outline the proof of the convergence of this algorithm. Indeed, they proved the convergence in two stages. First, they showed that using a sufficiently small value for the learning parameter (, all the actions are chosen enough number of times so that
[image: image9.wmf])

t

(

d

ˆ

m

will remain the maximum element of the estimate vector
[image: image10.wmf])

t

(

ˆ

d

after a finite time. This is stated in Theorem 1 below.

Theorem 1: For any given constants (> 0 and M < (, there exist (* > 0 and t0 < (such that under the CPRP algorithm, for all (((0, (*),

Pr[All actions are chosen at least M times each before time t] > 1-(, for all t (t0.

The detailed proof for this result can be found in [24].

 
The second stage of the proof of convergence of the CPRP algorithm consists of showing that if there is such an action (m, for which the reward estimate remains maximal after a finite number of iterations, then the mth component of the action probability vector converges w.p. 1, to unity.

Theorem 2: Suppose that there exists an index m and a time instant t0 ((such that

[image: image11.wmf]0

j

m

t

t

)

t

(

,

m

j

)

j

(

),

t

(

d

ˆ

)

t

(

d

ˆ

>

"

¹

"

>

.

Then pm(t) (1 with probability 1 as t ((.

Sketch of Proof: To prove this result, we define the following :

[image: image12.wmf][

]

)

t

(

Q

|

)

t

(

p

)

1

t

(

p

E

)

t

(

p

m

m

m

-

+

=

D

.

Using the assumptions of the theorem, this quantity becomes:

[image: image13.wmf]0

m

m

t

t

all

for

,

0

))

t

(

p

1

(

)

t

(

p

³

³

-

l

=

D

,

which implies that pm(t) is a submartingale. By the submartingale convergence theorem [9],
[image: image14.wmf]{

}

0

t

t

m

)

t

(

p

³

converges as t ((, and hence,

[image: image15.wmf][

]

0

)

t

(

Q

|

)

t

(

p

)

1

t

(

p

E

t

m

m

¾

¾

®

¾

-

+

¥

®

 with probability 1.

Hence, pm(t) (1 with probability 1.


The final theorem that shows the -optimal convergence of the CPRP algorithm can be stated as:

Theorem 3: For the CPRP algorithm, in every stationary random environment, there exists a (* > 0 and a t0 > 0, such that for any (((0, 1) and any (((0, 1),

[image: image16.wmf][

]

d

-

>

e

-

>

1

1

)

t

(

p

Pr

m

for all t > t0, where (((0, 1) is arbitrarily small.
Sketch of Proof: The proof of this theorem can be easily deduced from the first two results.

II.2. The Discretized Pursuit Reward-Inaction (DPRI) Algorithm

In 1990, Oommen and Lanctôt introduced [16] a discretized version of the Pursuit algorithm. This Pursuit algorithm was based on the Reward-Inaction learning paradigm, meaning that it updates the action probability vector P(t) only if the Environment rewards the chosen action. In the context of this paper, we shall refer to this algorithm as the Discretized Pursuit Reward-Inaction (DPRI) Scheme. The differences between the discrete and continuous versions of the Pursuit algorithms occur only in the updating rules for the action probabilities, the second step of the algorithm. The discrete Pursuit algorithms make changes to the probability vector P(t) in discrete steps, whereas the continuous versions use a continuous function to update P(t).

In the DPRI algorithm, when an action is rewarded, all the actions that do not correspond to the highest estimate are decreased by a step (, where (=1/rN, and N is a resolution parameter. In order to keep the sum of the components of the vector P(t) equal to unity, the probability of the action with the highest estimate has to be increased by an integral multiple of the smallest step size (. When the action chosen is penalized, there is no update in the action probabilities, and consequently, it is of the Reward-Inaction paradigm. This, in principle, fully describes the algorithm, given formally below.

ALGORITHM DPRI
Parameters

m
index of the maximal component of the reward estimate vector

[image: image17.wmf])}

t

(

d

ˆ

max{

)

t

(

d

ˆ

),

t

(

ˆ

i

r

,..,

1

i

m

=

=

d

.

Wi(t)
the number of times the ith action has been rewarded up to time t, for 1(i(r.

Zi(t)
the number of times the ith action has been chosen up to time t, for 1 (i(r.

N
resolution parameter

(=1/rN is the smallest step size

Notation : ((t) ({0,1} is the response from the Environment.
Method

Initialize pi(t)=1/r, for 1(i(r

Initialize
[image: image18.wmf])

t

(

ˆ

d

 by choosing each action a small number of times.

Repeat

Step 1: At time t, pick ((t) according to probability distribution P(t). Let ((t)= (i.

Step 2:
Update P(t) according to the following equations:

If ((t)=0 and pm(t) (1 Then

[image: image19.wmf]{

}

å

¹

¹

+

-

=

+

D

-

=

+

m

j

j

m

j

m

j

j

)

1

t

(

p

1

)

1

t

(

p

0

,

)

t

(

p

max

)

1

t

(

p

 (5)
Else

pj(t+1) = pj(t) for all 1(j (r.

Step 3: Update
[image: image20.wmf])

t

(

ˆ

d

exactly as in the CPRP Algorithm
End Repeat

END ALGORITHM DPRI

Oommen and Lanctôt proved that this algorithm satisfies both the properties of moderation and monotonically [16], required for any discretized “Estimator” algorithm to converge. They also showed that the algorithm is (-optimal in every stationary random environment.

The proof of the convergence of this algorithm follows the same trend as the proof for the Pursuit CRP algorithm, with the necessary adjustments made to accommodate for the discretization of the probability space [0,1]. Thus, Oommen and Lanctôt proved that if the mth action is rewarded more than any action from time t0 onward, then the action probability vector for the DPRI will converge to the unit vector em. These results are stated below.

Theorem 4: Suppose there exists an index, m, and a time instant t0((such that
[image: image21.wmf])

t

(

d

ˆ

)

t

(

d

ˆ

j

m

>

 for all j, where j (m and all t (t0. Then there exists an integer N0 such that for all resolution parameters N > N0, pm(t) (1 with probability 1 as t ((.

Sketch of Proof: The proof for this theorem aims to show that
[image: image22.wmf]{

}

0

t

t

m

)

t

(

p

³

is a submartingale satisfying
[image: image23.wmf][

]

¥

<

³

|

)

t

(

p

|

E

sup

m

0

t

. Then, using the result of the submartingale convergence theorem [9],
[image: image24.wmf]{

}

0

t

t

m

)

t

(

p

³

converges, and so,

[image: image25.wmf][

]

0

)

t

(

Q

|

)

t

(

p

)

1

t

(

p

E

t

m

m

¾

¾

®

¾

-

+

¥

®

.

Indeed, the authors of [16] showed that

[image: image26.wmf][

]

D

+

=

¹

+

t

m

m

m

m

c

d

)

t

(

p

1

)

t

(

p

),

t

(

Q

|

)

1

t

(

p

E

,

where ct is an integer, bounded by 0 and r, such that
[image: image27.wmf]D

+

=

+

t

m

m

c

)

t

(

p

)

1

t

(

p

. Thus,

[image: image28.wmf][

]

0

c

d

)

t

(

Q

|

)

t

(

p

)

1

t

(

p

E

t

m

m

m

³

D

=

-

+

 , for all t(t0,

implying that pm(t) is a submartingale. From the submartingale convergence theorem they infer that dmct((0 with probability 1. This in turn implies that ct(0 w.p. 1. Consequently, that
[image: image29.wmf]å

¹

®

D

-

m

j

j

0

)

0

,

)

t

(

p

max(

w.p. 1. Hence pm(t) (1 w.p. 1.



The next step in proving the convergence of this algorithm is to show that using a sufficiently large value for the resolution parameter N, all actions are chosen enough number of times so that
[image: image30.wmf])

t

(

d

ˆ

m

will remain the maximum element of the estimate vector
[image: image31.wmf])

t

(

ˆ

d

after a finite time.

Theorem 5: For each action (i, assume pi(0)(0. Then for any given constants (> 0 and M < (, there exists N0 < (and t0 < (such that under DPRI, for all learning parameters N > N0 and all time t > t0:

Pr{each action chosen more than M times at time t} (1-(.

The proof of this theorem is similar to the proof of Theorem 1, and can be found in [16].



These two theorems lead to the result that the DPRI scheme is (-optimal in all stationary random environments.

II.3. More Recent Pursuit Algorithms

In [20], Oommen and Agache explored all Pursuit algorithms that resulted from the combination of the continuous and discrete probability spaces with the Reward-Penalty and Reward-Inaction learning paradigms. They showed that applying different learning paradigms to the principle of pursuing the action with the best reward estimate, leads to four learning algorithms. These are listed below:

Algorithm DPRI: Discretized Pursuit Reward-Inaction Scheme

Paradigm: Reward-Inaction; Probability Space: Discretized

Algorithm DPRP: Discretized Pursuit Reward-Penalty Scheme

Paradigm: Reward- Penalty; Probability Space: Discretized

Algorithm CPRI: Continuous Pursuit Reward-Inaction Scheme

Paradigm: Reward-Inaction; Probability Space: Continuous

Algorithm CPRP: Continuous Pursuit Reward- Penalty Scheme

Paradigm: Reward- Penalty; Probability Space: Continuous

Observe that of the above four, the algorithms CPRP and DPRI were already presented in the literature and have been described above. The more recent Pursuit algorithms (CPRI and DPRP) are described in detail in [20]. The details of their design and their comparative properties are omitted here in the interest of brevity.

III. Generalized Pursuit Algorithms

The main idea that characterizes the existing Pursuit algorithms is that they ‘pursue’ the best-estimated action, which is the action corresponding to the maximal estimate. In any iteration, these algorithms increase only the probability of the best-estimated action, ensuring that the probability vector P(t) moves towards the solution that has the maximal estimate at the current time. This implies that if, at any time ‘t’, the action that has the maximum estimate is not the action that has the minimum penalty probability, then the automaton pursues a wrong action. In this paper, we generalize the design of the Pursuit algorithms such that it pursues a set of actions. Specifically, these actions have higher reward estimates than the current chosen action.

Figure 1 presents a pictorial representation of the two Pursuit approaches that can be used to converge to an action. The first approach, adopted by the existing Pursuit Algorithms, such as CPRP, CPRI, DPRP, DPRI, always pursues the best-estimated action. The present approach, adopted by the Generalized Pursuit Algorithms that we present here, does not follow only the best action - it follows all the actions that are “better” than the current chosen action, i.e. the actions that have higher reward estimates than the chosen action.

[image: image32.wmf]Solution Space

Solution

e

m

=[0 … 0 1 0 …0]

T

Solution Space

Solution

e

m

=[0 … 0 1 0 …0]

T

Initial action

probability vector

P(0)=[1/r...1/r…1/r]

T

Pursuit Algorithm

generalized Pursuit algorithms

Figure 1: Solution approach of the CPRP Pursuit and Generalized Pursuit algorithms

In a vectorial form, if action (m is the action that has the highest reward estimate at time ‘t’, the Pursuit Algorithms always pursue the vector e(t) = [0 0 … 1 0…0]T, where em(t)=1. In contrast, if (i denotes the chosen action, the Generalized Pursuit algorithms pursues the vector e(t), where

[image: image33.wmf]î

í

ì

=

=

¹

ï

î

ï

í

ì

>

£

=

otherwise

t

d

t

d

if

t

e

i

j

for

t

d

t

d

if

t

d

t

d

if

t

e

j

i

i

i

j

i

j

j

,

0

)}

(

ˆ

max{

)

(

ˆ

,

1

)

(

)

(

ˆ

)

(

ˆ

,

1

)

(

ˆ

)

(

ˆ

,

0

)

(

 (6)

Since this vector e(t) represents the direction towards which the probability vector moves, it is considered the direction vector of the Pursuit Algorithms.

In this paper, we present two versions of the Generalized Pursuit algorithms, followed by a comparative study of the performance of these algorithms with the existing Pursuit algorithms. The first algorithm introduced is the Generalized Pursuit Algorithm (GPA). This algorithm moves the action probability vector “away” from the actions that have smaller reward estimates, but it ironically, does not guarantee that it increases the probability for all the actions with higher estimates than the chosen action.

In the subsequent section, we shall present a new algorithm. The latter follows the philosophy of a Generalized Pursuit Algorithm in the sense that it increases the action probability for all the actions with higher reward estimates than the current chosen action.

III.1. The Generalized Pursuit Algorithm

The Generalized Pursuit Algorithm (GPA) presented in this section, is an example of an algorithm that generalizes the Pursuit Algorithm CPRP introduced by Thathachar and Sastry in [24]. It is a continuous estimator algorithm, which moves the probability vector towards a set of possible solutions in the probability space. Each possible solution is a unit vector in which the value ‘1’ corresponds to an action that has a higher reward estimate than the chosen action.

The CPRP algorithm increases the probability for the action that has the highest reward estimate, and decreases the action probability for all the other actions, as shown in the following updating equations:

[image: image34.wmf]m

j

all

for

),

t

(

p

)

1

(

)

1

t

(

p

)}

t

(

d

ˆ

{

max

d

ˆ

where

,

)

t

(

p

)

1

(

)

1

t

(

p

j

j

j

r

,...,

1

j

m

m

m

¹

l

-

=

+

=

l

+

l

-

=

+

=

 (7)

To increase the probability for the best-estimated action and to also preserve P(t) a probability vector, the Thathachar and Sastry’s Pursuit algorithm first decreases the probabilities of all the actions:

[image: image35.wmf]r

,...,

1

j

),

t

(

p

)

1

(

)

1

t

(

p

j

j

=

l

-

=

+

 (8)

The remaining amount (that determines the sum of the probabilities of all the actions to be ‘1’ is computed as:

[image: image36.wmf]l

=

l

+

-

=

l

-

-

=

+

-

=

D

å

å

å

å

=

=

=

=

)

t

(

p

)

t

(

p

1

)

t

(

p

)

1

(

1

)

1

t

(

p

1

r

1

j

j

r

1

j

j

r

1

j

j

r

1

j

j

In order to increase the probability of the best-estimated action, the CPRP Pursuit algorithm adds the probability mass (to the probability of the best-estimated action:

[image: image37.wmf])}

t

(

d

ˆ

{

max

d

ˆ

where

,

)

t

(

p

)

1

(

)

t

(

p

)

1

(

)

1

t

(

p

j

r

,...,

1

j

m

m

m

m

=

=

l

+

l

-

=

D

+

l

-

=

+

 (9)

In contrast to the CPRP algorithm, the newly introduced GPA algorithm equally distributes the remaining amount (to all the actions that have higher estimates than the chosen action. If K(t) denotes the number of actions that have higher estimates than the chosen action at time ‘t’, then the updating equations for the Generalized Pursuit Algorithm are expressed by the following equations:

[image: image38.wmf]å

¹

+

-

=

+

¹

£

"

×

-

=

+

¹

>

"

+

×

-

=

+

i

j

j

i

i

j

j

j

j

i

j

j

j

j

t

p

t

p

i

j

t

d

t

d

that

such

j

t

p

t

p

t

p

i

j

t

d

t

d

that

such

j

t

K

t

p

t

p

t

p

)

1

(

1

)

1

(

.

),

(

ˆ

)

(

ˆ

)

(

)

(

)

(

)

1

(

.

),

(

ˆ

)

(

ˆ

)

(

)

(

)

(

)

(

)

1

(

l

l

l

 (10)

In vector form, the updating equations can be expressed as follows:

[image: image39.wmf])

t

(

)

t

(

K

)

t

(

)

1

(

)

1

t

(

e

P

P

×

l

+

×

l

-

=

+

,

 (11)
where e(t) is the direction vector defined in (6).

Based on these equations, it can be seen that the GPA algorithm increases the probability for all the actions with
[image: image40.wmf])

(

1

)

(

t

K

t

p

j

<

, whose reward estimates are higher than the reward estimate of the chosen action. Formally, the Generalized Pursuit Algorithm can be described as below.

ALGORITHM GPA
Parameters

(
the learning parameter , where 0 < (< 1

m
index of the maximal component of
[image: image41.wmf])}

t

(

d

ˆ

max{

)

t

(

d

ˆ

),

t

(

ˆ

i

r

,..,

1

i

m

=

=

d

Wi(t), Zi(t) : as in Algorithms CPRP and DPRI
Notation : ((t) ({0,1} is the response from the Environment

Method

Initialization
pi(t) = 1/r, for 1 (i (r

Initialize
[image: image42.wmf])

t

(

ˆ

d

 by picking each action a small number of times.

Repeat

Step 1: At time t, pick ((t) according to probability distribution P(t). Let ((t) = (i.

Step 2: If K(t) represents the number of actions with higher estimates than the chosen

action at time t, update P(t) according to the following equations:

[image: image43.wmf]å

¹

+

-

=

+

¹

£

"

×

-

=

+

¹

>

"

+

×

-

=

+

i

j

j

i

i

j

j

j

j

i

j

j

j

j

t

p

t

p

i

j

t

d

t

d

that

such

j

t

p

t

p

t

p

i

j

t

d

t

d

that

such

j

t

K

t

p

t

p

t

p

)

1

(

1

)

1

(

),

(

ˆ

)

(

ˆ

)

(

)

(

)

(

)

1

(

),

(

ˆ

)

(

ˆ

)

(

)

(

)

(

)

(

)

1

(

l

l

l

Step 3: Update
[image: image44.wmf])

t

(

ˆ

d

exactly as in the CPRP Algorithm

End Repeat

END ALGORITHM GPA

As for the previous Pursuit algorithms, the convergence of the GPA is proven in two steps. First, we demonstrate that using a sufficiently small value for the learning parameter (, all actions are chosen enough number of times such that
[image: image45.wmf])

t

(

d

ˆ

m

will remain the maximum element of the estimate vector
[image: image46.wmf])

t

(

ˆ

d

after a finite time. Formally, this is expressed as follows:

Theorem 6: For any given constants (> 0 and M < (, there exist (* > 0 and t0 < (such that under the GPA algorithm, for all (((0, (*),

Pr[All actions are chosen at least M times each before time t] > 1-(, for all t (t0.

Proof: The proof of this theorem is analogous to the proof of the corresponding result for the TSE algorithm [24]. We shall consider the same random variable Yit as the number of times the ith action was chosen up to time ‘t’ in any specific realization.

From equation (10), at any step ‘t’ in the algorithm, if the action (i is chosen, we have:

[image: image47.wmf](

)

i

j

t

d

t

d

if

t

p

t

p

t

d

t

d

if

t

K

t

p

t

p

i

j

j

j

i

j

j

j

¹

-

£

-

-

×

-

=

-

>

-

-

+

-

×

-

=

),

1

(

ˆ

)

1

(

ˆ

)

1

(

1

)

(

)

1

(

ˆ

)

1

(

ˆ

1

)

(

)

1

(

)

1

(

)

(

l

l

l

 (12)
The probability of the chosen action pi(t) can either be
[image: image48.wmf])

1

t

(

p

)

1

(

i

-

×

l

-

, if there are other actions with better estimates than (i, or, it can be
[image: image49.wmf]l

+

-

×

l

-

)

1

t

(

p

)

1

(

i

, if the chosen action has the maximal reward estimate. In both these situations, the following inequality is valid

[image: image50.wmf])

1

t

(

p

)

1

(

)

t

(

p

i

i

-

×

l

-

³

The equations in (10) show that the following inequality is valid for all the actions:

[image: image51.wmf]r

,...,

1

j

)

j

(

),

1

t

(

p

)

1

(

)

t

(

p

j

j

=

"

-

×

l

-

³

 (13)

which implies that during any of the first ‘t’ iterations of the algorithm,

Pr{(i is chosen} (pi(0)((1-()t, for any i=1,…,r

 (14)

With the above clarified, the reminder of the proof is identical to the proof for the TSE algorithm and omitted (it can be found in [24]).

(((

The second step in proving the convergence of the GPA consists of demonstrating that if the mth action is rewarded more than any other action from time t0 onward, then the action probability vector converges to em with probability 1. This is shown in the following theorem.

Theorem 7: Suppose that there exists an index m and a time instant t0 ((such that

[image: image52.wmf]0

j

m

t

t

)

t

(

,

m

j

)

j

(

),

t

(

d

ˆ

)

t

(

d

ˆ

>

"

¹

"

>

.

Then pm(t)(1 with probability 1 as t ((.

Proof: We shall demonstrate that the sequence of random variables {pm(t)}t(t0 is a submartingale. The convergence in probability results then from the submartingale convergence theorem [9].

Consider

[image: image53.wmf][

]

)

t

(

|

)

t

(

p

)

1

t

(

p

E

)

t

(

p

m

m

m

Q

-

+

=

D

 (15)

where Q(t) is the state vector for the Estimator Algorithms which consists of P(t) and
[image: image54.wmf]).

t

(

ˆ

d

From the updating equations (Eq. 8) and the assumptions of this theorem, pm(t+1) can be expressed as:

[image: image55.wmf](

)

(

)

chosen

is

if

)

t

(

p

1

)

t

(

p

)

t

(

p

)

t

(

p

1

)

1

t

(

p

m

j

chosen

is

if

)

t

(

K

)

t

(

p

)

1

(

)

1

t

(

p

m

m

m

m

j

j

j

m

j

m

m

a

-

l

+

=

×

l

-

-

=

+

¹

a

l

+

×

l

-

=

+

å

¹

This implies that for all t (t0, (pm(t) can be calculated to be:

[image: image56.wmf](

)

[

]

(

)

(

)

(

)

0

)

t

(

p

1

)

t

(

K

)

t

(

p

)

t

(

p

1

)

t

(

p

1

)

t

(

p

)

t

(

K

1

p

)

t

(

p

1

)

t

(

p

)

t

(

p

)

t

(

K

)

t

(

p

m

m

m

m

m

m

m

m

j

j

m

m

³

-

l

=

=

×

-

l

+

-

×

÷

÷

ø

ö

ç

ç

è

æ

-

l

=

=

×

-

l

+

×

÷

÷

ø

ö

ç

ç

è

æ

×

l

-

l

=

D

å

¹

 (16)

Hence, pm(t) is a submartingale. By the submartingale convergence theorem [9], {pm(t)}t(t0 converges as t((,

E[pm(t+1)- pm(t) | Q(t)](0 with probability 1.

Hence, pm(t)(1 with probability 1, and the theorem is proven.

 (((

Finally, the (-optimal convergence result can be stated as follows:

Theorem 8: For the GPA algorithm, in every stationary random environment, there exists a (* > 0 and t0>0, such that for all (((0, (*) and for any (((0, 1) and any (((0, 1),

[image: image57.wmf][

]

d

-

>

e

-

>

1

1

)

t

(

p

Pr

m

for all t > t0.

 (((

The proof for this theorem results as a logical consequence of the previous two theorems, Theorem 6 and Theorem 7. The simulation results regarding this algorithm are given in Section IV.

III.2. The Discretized Generalized Pursuit Algorithm

The Discretized Generalized Pursuit Algorithm, denoted DGPA, is another algorithm that generalizes the concepts of the Pursuit algorithm by ‘pursuing’ all the actions that have higher estimates than the current chosen action. Strictly speaking, it is “pseudo-discretized” (as opposed to the various families of discretized schemes in the literature) because it moves the probability vector P(t) in discrete steps, but the steps do not have equal sizes, and are not "fixed" a priori.

At each iteration, the algorithm counts how many actions have higher estimates than the current chosen action. If K(t) denotes this number, the DGPA algorithm increases the probability of all the actions with higher estimates with the amount (/K(t), and decreases the probabilities for all the other actions with the amount (/(r-K(t)), where (is a resolution step, (=1/rN, with N a resolution parameter.

From the perspective of vectors, the updating equations given in the formal algorithm below, are expressed as :

[image: image58.wmf][

]

)

t

(

)

t

(

K

r

)

t

(

)

t

(

K

)

t

(

)

1

t

(

e

u

e

P

P

-

×

-

D

-

×

D

+

=

+

,

 (17)
where e(t) is the direction vector defined in (6) and u is the unit vector in which uj=1, j=1,2,…,r.

ALGORITHM DGPA

Parameters

N
resolution parameter

K(t)
the number of actions with higher estimates than the current chosen action

(
the smallest step size
[image: image59.wmf]rN

1

=

D

Wi(t), Zi(t) : as in Algorithms CPRP and DPRI
Notation : ((t) ({0,1} is the response from the Environment

Method

Initialization
pi(t) = 1/r, for 1 (i (r

Initialize
[image: image60.wmf])

t

(

ˆ

d

 by picking each action a small number of times.

Repeat

Step 1: At time t pick ((t) according to probability distribution P(t). Let ((t) = (i.

Step 2: Update P(t) according to the following equations:

[image: image61.wmf]å

¹

+

-

=

+

<

¹

"

-

D

-

=

+

>

¹

"

D

+

=

+

i

j

j

i

i

j

j

j

i

j

j

j

t

p

t

p

t

d

t

d

that

such

i

j

j

t

K

r

t

p

t

p

t

d

t

d

that

such

i

j

j

t

K

t

p

t

p

)

1

(

1

)

1

(

)

(

ˆ

)

(

ˆ

)

,

(

}

0

,

)

(

)

(

max{

)

1

(

)

(

ˆ

)

(

ˆ

)

,

(

}

1

,

)

(

)

(

min{

)

1

(

(18)

Step 3: Same as in the GPA algorithm

End Repeat

END ALGORITHM DGPA

In contrast to the GPA algorithm, the DGPA always increases the probability of all the actions with higher estimates.

To prove the convergence of this algorithm, we shall fist prove that the DGPA possesses the moderation property [16]. Then we prove that this algorithm also possesses the monotone property. As a consequence of these properties, the Markov chain {pm(t)} is a submartingale [16], and by the submartingale convergence theorem [9], the convergence of the algorithm follows.

Theorem 9: The DGPA possesses the moderation property.

 Proof: To prove this property, we shall demonstrate that the value 1/rN bounds the magnitude by which any action probability can decrease at any iteration of the algorithm:

[image: image62.wmf]rN

1

)

1

t

(

p

)

t

(

p

j

j

<

+

-

From the updating equations in (17), the amount that a probability decreases is computed to be:

[image: image63.wmf]rN

1

K

r

1

rN

1

K

r

)

1

t

(

p

)

t

(

p

j

j

<

-

×

=

-

D

=

+

-

and the result is proven.

 (((

The second step in proving the convergence of the DGPA consists of demonstrating that the DGPA possesses the monotone property. This is shown in Theorem 10.

Theorem 10: The DGPA possesses the monotone property. Thus if there exists an index m and a time instant t0 ((, such that

[image: image64.wmf]0

j

m

t

t

)

t

(

,

m

j

)

j

(

),

t

(

d

ˆ

)

t

(

d

ˆ

>

"

¹

"

>

,

then there exists an integer, N0, such that for all N > N0, pm(t) (1 with probability 1 as t ((.

Proof: The proof of this theorem aims to show that
[image: image65.wmf]{

}

0

t

t

m

)

t

(

p

³

is a submartingale satisfying
[image: image66.wmf][

]

¥

<

³

|

)

t

(

p

|

E

sup

m

0

t

. Then, based on the submartingale convergence theorem [9]
[image: image67.wmf]{

}

0

t

t

m

)

t

(

p

³

converges, and so,

[image: image68.wmf][

]

0

)

t

(

Q

|

)

t

(

p

)

1

t

(

p

E

t

m

m

¾

¾

®

¾

-

+

¥

®

.

Consider

[image: image69.wmf][

]

)

t

(

|

)

t

(

p

)

1

t

(

p

E

)

t

(

p

m

m

m

Q

-

+

=

D

where Q(t) is the state vector for the estimator algorithms.

From the updating equations (17) and the assumptions of this theorem, pm(t+1) can be expressed as:

[image: image70.wmf]chosen

is

if

)

t

(

p

1

r

)

t

(

p

1

)

1

t

(

p

m

j

,

chosen

is

if

)

t

(

K

)

t

(

p

)

1

t

(

p

m

m

m

j

j

m

j

m

m

a

D

+

=

÷

ø

ö

ç

è

æ

-

D

-

-

=

+

¹

a

D

+

=

+

å

¹

This implies that for all t (t0, (pm(t) can be calculated to be:

[image: image71.wmf][

]

0

)

t

(

K

1

1

)

t

(

p

)

t

(

K

)

t

(

p

))

t

(

p

1

(

)

t

(

K

)

t

(

p

)

t

(

p

)

t

(

K

)

t

(

|

)

t

(

p

)

1

t

(

p

E

m

m

m

m

j

m

j

m

m

>

÷

÷

ø

ö

ç

ç

è

æ

-

×

D

+

D

=

×

D

+

-

D

=

×

D

+

×

D

=

-

+

å

¹

Q

Hence, pm(t) is a submartingale. By the submartingale convergence theorem [9], {pm(t)}t(t0 converges as t((, and thus,

E[pm(t+1)- pm(t) | Q(t)](0 with probability 1.

Hence, pm(t)(1 with probability 1, and the theorem is proven.

(((

Since the DGPA possesses the moderation and monotony properties, it implies that the DGPA is (-optimal [16] in all random environments.

IV. Experimental Results

This section presents a comparison
 of the performance of the newly introduced Generalized Pursuit Algorithms with the Pursuit Algorithms reported to-date. In order to compare their relative performances, we performed simulations to accurately characterize their respective rates of convergence. The simulations were performed imposing the same restrictions and in the same benchmark environments as the simulations presented in [5], [6], [16], [20], [24]. In all the tests performed, an algorithm was considered to have converged, if the probability of choosing an action was greater or equal to a threshold T (0<T(1). If the automaton converged to the best action (i.e., the one with the highest probability of being rewarded), it was considered to have converged correctly.

Before comparing the performance of the automata, innumerable multiple tests were executed to determine the “best” value of the respective learning parameters for each individual algorithm. The value was reckoned as the “best” value if it yielded the fastest convergence and the automaton always converged to the correct action in a sequence of NE experiments. These best parameters were then chosen as the final parameter values used for the respective algorithms to compare their rates of convergence.

The simulations were performed for different existing benchmark environments with two and ten actions, for which the threshold T was set to be 0.999 and NE=750, the same values used in [20]. These environments have been used also to compare a variety of continuous and discretized schemes, and in particular, the DPRI in [16], and to compare the performance of the CPRP against other traditional VSSA in [24]. Furthermore, to keep the conditions identical, each estimator algorithm sampled all actions 10 times each in order to initialize the estimate vector. These extra iterations are also included in the results presented in the following tables.

In a two-action environment, the GPA algorithm reduces in a degenerate manner, to the CPRP Pursuit algorithm, and the DGPA reduces to DPRP algorithm. For this reason, simulations were performed only in ten-action benchmark environments and the results are presented in Table 1. For comparison, Table 2 presents the simulation results of the existing Pursuit algorithms.

Table 1: Performance of the Generalized Pursuit Algorithms in benchmark ten-action environments

for which exact convergence was required in 750 experiments.

	Environment
	GPA
	DGPA

	
	(
	No. of

Iterat.
	N
	No. of

Iterat.

	EA
	0.0127
	948.03
	24
	633.64

	EB
	0.0041
	2759.02
	52
	1307.76

Note: The reward probabilities for the actions are:

EA: 0.7 0.5 0.3 0.2 0.4 0.5 0.4 0.3 0.5 0.2

EB: 0.1 0.45 0.84 0.76 0.2 0.4 0.6 0.7 0.5 0.3

Table 2: Comparison of the Pursuit algorithms in ten-action benchmark environments for which exact convergence was required in 750 experiments [20].

	Environ.
	DPRI
	DPRP
	CPRI
	CPRP

	
	N
	No. of

Iterat.
	N
	No. of

Iterat.
	(
	No. of

Iterat.
	(
	No. of

Iterat.

	EA
	188
	752
	572
	1126
	0.0097
	1230
	0.003
	2427

	EB
	1060
	2693
	1655
	3230
	0.002
	4603
	0.00126
	5685

Since the GPA algorithm was designed as a generalization of the continuous reward-penalty Pursuit algorithm, a comparison between these two algorithms is presented. The results show that the GPA algorithm is 60% faster than the CPRP algorithm in the EA environment and 51% faster in the EB environment. For example, in the EA environment, the GPA converges in average in 948.03 iterations, and the CPRP algorithm requires, on average, 2427 iterations for convergence, which shows an improvement of 60%. In the EB environment, the CPRP algorithm required on average 5685 number of iterations whereas the GPA algorithm required, on average, only 2759.02 iterations for convergence, being 51% faster than the CPRP algorithm.

Similarly, the DGPA is classified as a reward-penalty discretized Pursuit algorithm. If compared against the DPRP algorithm, the DGPA proves to be up to 59% faster. For example, in the EB environment, the DGPA algorithm converges in an average of 1307.76 iterations whereas the DPRP algorithm requires 3230 iterations. Also, the DGPA algorithm proves to be the fastest Pursuit algorithm, being up to 50% faster than the DPRI algorithm. For example, in the same environment, EB, the DGPA algorithm requires 1307.76 and the DPRI algorithm requires 2693 iterations to converge.

The following figure graphically compares the relative performance of these algorithms to the CPRP algorithm in the benchmark ten-action environments.

[image: image72.wmf]0.76

0.62

0.26

0.59

0.57

0.43

0.55

0.38

0.5

0.37

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E_A

E_B

Environment

I

m

p

r

o

v

e

m

e

n

t

pDGPA

DP_RI

DP_RP

GPA

CP_RI

CP

RP

Figure 2: Performance of the Pursuit Algorithms relative to the CPRP algorithm in ten-action environments for which exact convergence was required in 750 experiments.

Based on these experimental results, and considering the number of iterations required to attain the same accuracy of convergence in ten-action benchmark environments, we can rank the six Pursuit algorithms as follows:

Best Algorithm:
Discretized Generalized Pursuit Algorithm

(DGPA)

2nd-best Algorithm:
Discretized Pursuit Reward-Inaction

(DPRI)

3nd-best Algorithm:
Generalized Pursuit Algorithm

(GPA)

4rd-best Algorithm:
Discretized Pursuit Reward-Penalty

(DPRP)

5rd-best Algorithm:
Continuous Pursuit Reward-Inaction

(CPRI)

6th-best Algorithm:
Continuous Pursuit Reward-Penalty

(CPRP)

V. Conclusion

Over the last two decades, many new families of learning automata have emerged, with the class of Estimator Algorithms being among the fastest ones. Thathachar and Sastry [24] were the first to introduce the concept of Pursuit Algorithms. Various other continuous and discrete Pursuit algorithms were introduced in [16] [20], but all these Pursuit algorithms ‘pursue’ the action that has the maximal reward estimate at any iteration.

In this paper, we introduced a generalization of the learning method of the Pursuit algorithms that ‘pursues’ the actions that have higher estimates than the current chosen action, and hence minimizing the probability of pursuing a wrong action. We presented two new generalized Pursuit algorithms that follow this learning approach, namely, the Generalized Pursuit Algorithm (GPA) and the Discretized Generalized Pursuit Algorithm (DGPA). We have also presented a quantitative comparison between these algorithms and the existing Pursuit algorithms.

Overall, the generalized Pursuit algorithms proved to be faster than the Pursuit algorithms in environments with more than two actions. Specifically, in the same environments, the GPA algorithm proved to be the fastest continuous Pursuit algorithm, the DGPA proved to be the fastest converging discretized Pursuit estimator algorithm, and, indeed, the fastest Pursuit estimator algorithm.

The question of studying multiple response automata [29] and parallel ensembles [48] of these new pursuit schemes, and of deriving finite time analysis for these new algorithms [47] remains open.

References

[1]
N. Baba, T. Soeda, and Y. Sawaragi, “An Application of Stochastic Automata to the Investment Game”, Int. J. Syst. Sci., Vol. 11, No. 12, pp. 1447-1457, Dec. 1980.

[2]
S. Lakshmivarahan, Learning Algorithms Theory and Applications, New York: Springer-Verlag, 1981.

[3]
S. Lakshmivarahan, “Two Person Decentralized Team with Incomplete Information”, Appl. Math. and Computation, Vol. 8, pp. 51-78, 1981.

[4]
S. Lakshmivarahan and M. A. L. Thathachar, “Absolutely Expedient Algorithms for Stochastic Automata”, IEEE Trans. man. Cybern., Vol. SMC-3, pp. 281-286, 1973.

[5]
J. K. Lanctôt, Discrete Estimator Algorithms: A Mathematical Model of Computer Learning, M.Sc. Thesis, Dept. Math. Statistics, Carleton Univ., Ottawa, Canada, 1989.

[6]
J. K. Lanctôt and B. J. Oommen, “Discretized Estimator Learning Automata”, IEEE Trans. on Syst. Man and Cybernetics, Vol. 22, No. 6, pp. 1473-1483, November/December 1992.

[7]
M. R. Meybodi, Learning Automata and its Application to Priority Assignment in a Queuing System with Unknown Characteristic, Ph.D. Thesis, School of Elec. Eng. and Computing Sci., Univ. Oklahoma, Norman, OK.

[8]
K. S. Narendra and S. Lakshmivarahan, “Learning Automata: A Critique”, J. Cybern. Inform. Sci., Vol. 1, pp. 53-66, 1987.

[9]
K. S. Narendra and M. A. L. Thathachar, Learning Automata, Englewood cliffs, NJ, Prentice-Hall, 1989.

[10]
K. S. Narendra and M. A. L. Thathachar, “Learning Automata – A Survey, IEEE Trans. on Syst. Man and Cybernetics, Vol. SMC-4, 1974, pp. 323-334.

[11]
K. S. Narendra and M. A. L. Thathachar, “On the Behavior of a Learning Automata in a Changing Environment with Routing Applications”, IEEE Trans. Syst. Man Cybern., Vol. SMC-10. pp. 262-269, 1980.

[12]
K. S. Narendra, E. Wright, and L. G. Mason, “Applications of Learning Automata to Telephone Traffic Routing”, IEEE Trans. Syst. Man. Cybern., Vol. SMC-7, pp. 785-792, 1977.

[13]
B. J. Oommen, “Absorbing and Ergodic Discretized Two-Action Learning Automata”, IEEE Trans. Syst. Man. Cybern., Vol. SMC-16, pp. 282-296, 1986.

[14]
B. J. Oommen and J. R. P. Christensen, “Epsilon-Optimal Discretized Reward-Penalty Learning Automata”, IEEE. Trans. Syst. Man. Cybern., Vol. SMC-18, pp. 451-458, May/June 1988.

[15]
B. J. Oommen and E.R. Hansen, “The Asymptotic Optimality of Discretized Linear Reward-Inaction Learning Automata”, IEEE. Trans. Syst. Man. Cybern., pp. 542-545, May/June 1984.

[16]
B.J. Oommen and J. K. Lanctôt, “Discretized Pursuit Learning Automata”, IEEE Trans. Syst. Man. Cybern., vol. 20, No.4, pp.931-938, July/August 1990.

[17]
B. J. Oommen and D. C. Y. Ma, “Deterministic Learning Automata Solutions to the Equi-partitioning Problem”, IEEE Trans. Comput., Vol. 37, pp. 2-14, Jan 1988.

[18]
B. J. Oommen and D. C. Y. Ma, “Stochastic Automata Solutions to the Object Partitioning Problem”, The Computer Journal, Vol. 35, 1992, pp. A105-A120.

[19]
B. J. Oommen and M. A. L. Thathachar, “Multiaction Learning Automata Possessing Ergodicity of the Mean”, Inform. Sci., vol. 35, no. 3, pp. 183-198, June 1985.

[20]
B. J. Oommen, and M. Agache, “Continuous and Discretized Pursuit Learning Schemes: Various Algorithms and Their Comparison.”, IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-31(B), June 2001, pp. 277-287.

[21]
R. Ramesh, Learning Automata in Pattern Classification”, M.E. Thesis, Indian Institute of Science, Bangalore, India, 1983.

[22]
M. A. L. Thathachar and B. J. Oommen, “Discretized Reward-Inaction Learning Automata”, J. Cybern. Information Sci., pp. 24-29, Spring 1979.

[23]
M. A. L. Thathachar and P.S. Sastry, “A Class of Rapidly Converging Algorithms for Learning Automata”, IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-15, 1985, pp. 168-175.

[24]
M. A. L. Thathachar and P.S. Sastry, “Estimator Algorithms for Learning Automata”, Proc. Platinum Jubilee Conf. on Syst. Signal Processing, Dept. Elec. Eng., Indian Institute of Science, Bangalore, India, Dec. 1986.

[25]
M. L. Tsetlin, “On the Behavior of Finite Automata in Random Media”, Automat. Telemek. (USSR), Vol. 22, pp. 1345-1354, Oct. 1961.

[26]
M. L. Tsetlin, Automaton Theory and the Modeling of Biological Systems, New York: Academic, 1973.

[27]
V. I. Varshavskii and I. P. Vorontsova, “On the Behavior of Stochastic Automata with Variable Structure”, Automat. Telemek. (USSR), Vol. 24, pp. 327-333, 1963.

[28]
H. Beigy and M. R. Meybodi, “Adaptation of Parameters of BP Algorithm Using Learning Automata”, Proceedings of the VI Brazilian Symposium on Neural Networks (SBRN'00).
[29]
A. A. Economides, “ Multiple Response Learning Automata”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 26, No.1, 1996, pp. 153-156.

[30]
M. N. Howell and M. C. Best, “On-line PID Tuning for Engine Idle-speed Control using Continuous Action Reinforcement Learning Automata”, Journal of Control Engineering Practice, 8 , 1999. pp 147-154.

[31]
K. Najim and A. S. Poznyak, Learning automata : Theory and Applications,
Pergamon Press, Oxford, 1994.

[32]
B. J. Oommen and T. D. Roberts, “Continuous Learning Automata Solutions to the Capacity Assignment Problem”, IEEE Transactions on Computers, Vol. 49:6, June 2000, pp. 608-620.

[33]
G. I. Papadimitriou, “A New Approach to the Design of Reinforcement Schemes for Learning Automata: Stochastic Estimator Learning Algorithms”, IEEE Transactions on Knowledge and Data Engineering, Vol. 6, 1994, pp. 649-654.

[34]
G. I. Papadimitriou, “Hierarchical Discretized Pursuit Nonlinear Learning Automata with Rapid Convergence and High Accuracy”, IEEE Transactions on Knowledge and Data Engineering, Vol. 6, 1994, pp. 654-659.

[35]
A. S. Poznyak and K. Najim, Learning Automata and Stochastic Optimization, Springer-Verlag, Berlin, 1997.

[36]
G. I. Papadimitriou, P. Nicopolitidis, and A. S. Pomportsis, “Self-Adaptive Polling Protocols for Wireless LANs: A Learning-Automata-Based Approach”, Proceedings of ICECS 2001 the IEEE International Conference on Electronics, Circuits and Systems, Malta, September , 2001.

[37]
G. I. Papadimitriou and A. S. Pomportsis, “Self-Adaptive TDMA Protocols for WDM Star Networks: A learning-Automata Approach”, IEEE Photonics Technology Letters, Vol. 11, No.10, 1999, pp. 1322-1324.

[38]
G. I. Papadimitriou and A. S. Pomportsis, “On the Use of Stochastic Estimator Learning Automata for Dynamic Channel Allocation in Broadcast Networks”, Congress on Evolutionary Computation, IEEE/CEC 2000, July 2000, San Diego, U.S.A.

[39]
F. Seredynski, “Distributed Scheduling Using Simple Learning Machines”, European Journal of Operational Research 107, Elsevier, 1998, pp. 401-413.

[40]
N. Abe, and M. Warmuth, “On the computational complexity of approximating distributions by probabilistic automata”, Machine Learning, 9, 1998, pp. 205-260.

[41]
T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kaelbling, E. Kokkevis, and O. Maron. “Inferring finite automata with stochastic output functions and an application to Map learning”, Machine Learning, 18, pp. 81-108, 1995.

[42]
M. N. Howell and T. J. Gordon, “Countinous Learning Automata and Adaptive Digital Filter Design”, Proceedings of UKACC International Conference on CONTROL '98, IEE Conference Publication No. 455, UK, 1998.

[43]
K. S. Narendra and K. Parthasarathy, “Learning Automata Approach to Hierarchical Multiobjective Analysis”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 21, No.1, 1991, pp. 263-273.

[44]
G. I. Papadimitriou and D. G. Maritsas, “Learning Automata-Based Receiver Conflict Avoidance Algorithms for WDM Broadcast-and-Select Star Networks”, IEEE/ACM Transactions on Networking, Vol. 4, No.3 1996 pp. 407-412.

[45]
G. I. Papadimitriou and A. S. Pomportsis, “ Learning-Automata-Based MAC Protocols for Photonic LANs”, IEEE Photonics Technology Letters, 2000, pp. 481.

[46]
G. I. Papadimitriou, A. L. Vakali and A. S. Pomportsis, “Designing a Learning-Automata-Based Controller for Client/Server Systems: A methotodology”, IEEE ICTAI 2000, The 12th IEEE International Conference on Tools with Artificial Intelligence,Vancouver, British Columbia, Canada, November 13-15, 2000.

[47]
K. Rajaraman and P. S. Sastry, “ Finite Time Analysis of the Pursuit Algorithm for Learning Automata”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 26, No.4, 1996, pp. 590-598.

[48]
M. A. L. Thathachar and M. T. Arvind, “Parallel Algorithms for Modules of Learning Automata”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 28, No.1, 1998, pp. 24-33.

[49]
C. K. K. Tang and P. Mars, “Games of Stochastic Learning Automata and Adaptive Signal Processing”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 23, No.3, 1993, pp. 851-856.

[50]
C. Unsal, P. Kachroo and J. S. Bay, “Multiple Stochastic Learning Automata for Vehicle Path Control in an Automated Highway System” IEEE Transactions on Systems, Man and Cybernetics, Vol. 29, No.1, 1999, pp. 120-128.

[51]
Q. H. Wu, “Learning coordinated control of power systems using interconnected learning automata”, International Journal of Electrical Power and Energy Systems, 1995 Vol.17, No.2, pp.91-99.

[52]
T. Gordon, C. Marsh, and Q. H. Wu, Stochastic optimal control of vehicle suspension systems using learning automata”, Proc Institution of Mechanical Engineers, Pt. I. Journal of Systems and Control Engineering, Vol.207, No.13, 1993, pp.143-152.

[53]
F. Seredynski, J. P. Kitajima, B. Plateau, “Simulation of Learning Automata Networks on Distributed Computers”, European Simulation Symposium 1992: Simulation and AI in Comput. Aided Techniques, Dresden, Germany, Nov. 1992.

[54]
A. S. Poznyak, K. Najim, M. Chtourou., “Learning automata with continuous inputs and their application for multimodal functions optimization” International Journal of Systems Science Volume:- 27 Issue:- 1 Pages 87-96.

[55]
G. I. Papadimitriou and A. S. Pomportsis, “Learning-Automata-Based TDMA Protocols for Broadcast Communication Systems with Bursty Traffic”, IEEE Communication Letters, Vol. 4, No.3, 2000, pp. 107-109.

[56] Oommen, B. J. and De St. Croix, T., “String Taxonomy Using Learning Automata”, IEEE Transactions on Systems, Man and Cybernetics, Vol.SMC-27, 1997, pp.354-365.

[57]
Oommen, B. J. and De St. Croix, T., “Graph Partitioning Using Learning Automata”, IEEE Transactions on Computers, Vol. 45, No. 2, 1995, pp. 195-208.

[58]
R. Simha and J. F. Kurose, “Relative Reward Strength Algorithms for Learning Automata”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 19, No.2, 1989, pp. 388-398.

� A preliminary version of this paper can be found in the Proceedings of SCI-2000, the Fourth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, USA, July 2000.

�Senior Member IEEE. Both authors can be contacted at : School of Computer Science, Carleton University, Ottawa; Canada: K1S 5B6. E-mail address of contact author : oommen@scs.carleton.ca. The work of the second author was supported in part by the Natural Sciences and Engineering Research Council of Canada.

� The applications listed here (and the references listed in the bibliography) are quite comprehensive, but by no means complete. Indeed, this relatively new field has been “exploding”. It has recently been enhanced by a spectrum of applications in computer science and engineering – from areas as diverse as the design of data structures, to the implementation of automatic navigation methods.

� Thathachar and Sastry also introduced the class of Estimator Algorithms (referred to as the TSE Estimator Algorithms [24]), which were subsequently discretized by Lanctôt and Oommen [6]. These algorithms possess the property that they do not just pursue the "current best action" but update the action probability vector using a weighting function, which, in turn, is a function of the differences between the reward estimates. The intention, in this paper, is to design and develop algorithms which are more straightforward, and which directly (as the crow flies) "pursue" the set of "superior" actions without invoking any auxiliary functions.

�The comparison here is only between the various families of Pursuit Algorithms. A more complete comparison between these algorithms and the families of Estimator Algorithms is not included here. Such a comparison is presently being compiled. The point is that because there are various parameters involved, a fair comparison can be made only by allowing the LA to "play on a level field".

Generalized Pursuit Learning Schemes - New Continuous and Discretized Schemes : Page

_1009859242.unknown

_1009859971.unknown

_1009861066.unknown

_1026737948.doc

Solution Space

Solution

e

m

=[0 … 0 1 0 …0]

T

Solution Space

Solution

e

m

=[0 … 0 1 0 …0]

T

Initial action

probability vector

P(0)=[1/r...1/r…1/r]

T

Pursuit Algorithm

generalized Pursuit algorithms

_1026825212.unknown

_1026825251.unknown

_1026738885.unknown

_1026739213.unknown

_1026739299.unknown

_1026738295.unknown

_1009861070.unknown

_1009861071.unknown

_1022592444.doc

0.76

0.62

0.26

0.59

0.57

0.43

0.55

0.38

0.5

0.37

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E_A

E_B

Environment

Improvement

pDGPA

DP_RI

DP_RP

GPA

CP_RI

CP

RP

_1009861068.unknown

_1009861062.unknown

_1009861064.unknown

_1009861065.unknown

_1009861063.unknown

_1009861059.unknown

_1009861060.unknown

_1009861057.unknown

_1009861058.unknown

_1009859972.unknown

_1009861056.unknown

_1009859817.unknown

_1009859968.unknown

_1009859970.unknown

_1009859966.unknown

_1009859967.unknown

_1009859818.unknown

_1009859709.unknown

_1009859814.unknown

_1009859816.unknown

_1009859710.unknown

_1009859702.unknown

_1009859704.unknown

_1009859347.unknown

_977772817.unknown

_982691496.unknown

_1009859194.unknown

_1009859195.unknown

_1009859140.unknown

_977773154.unknown

_977773155.unknown

_977772909.unknown

_977769180.unknown

_977769319.unknown

_977769429.unknown

_977772813.unknown

_977769352.unknown

_977769301.unknown

_975823454.unknown

_975826624.unknown

_977769083.unknown

_977769120.unknown

_975827764.unknown

_975824225.unknown

_975824381.unknown

_975824935.unknown

_975823814.unknown

_975820501.unknown

_975821079.unknown

_975821331.unknown

_973862346.unknown

_975789419.unknown

