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ABSTRACT

A typical syntactic pattern recognition (PR) problem involves comparing a noisy string with
every element of a dictionary, H. The problem of classification can be greatly smplified if the
dictionary is partitioned into a set of sub-dictionaries. In this case, the classification can be
hierarchica -- the noisy string is first compared to a representative element of each sub-dictionary
and the closest match within the sub-dictionary is subsequently located. Indeed, the entire
problem of sub-dividing a set of strings into subsets where each subset contains "similar” strings
has been referred to as the "String Taxonomy Problem”. To our knowledge there is no reported
solution to this problem (see footnote on Page 2). In this paper we shall present a learning-
automaton based solution to string taxonomy. The solution utilizes the Object Migrating
Automaton (OMA) whose power in clustering objects and images [33,35] has been reported. The
power of the scheme for string taxonomy has been demonstrated using random strings and
garbled versions of string representations of fragments of macromolecules.

Keywords: String Taxonomy, Sring Clustering, Dictionary Partitioning, Syntactic Pattern
Recognition.
I. INTRODUCTION

Syntactic and structural pattern recognition (PR) are distinct from statistical PR because,
unlike in the latter, in the former two areas, the processing of the patterns is achieved by
representing them symbolicaly using primitive or elementary symbols. The PR system
symbolically models noisy variations of typica samples of the patterns, and these models are
utilized in both the training and testing phases of the system.

There are essentially two strategies utilized in statistical pattern recognition. In a non-
parametric scheme, the classifier is presented with a set of training samples from each class.
Typicaly, when a testing sample is encountered, the classifier compares the latter with every
training sample, and a decision is made based on the training samples which are its closest
neighbours. Clearly, this is a computationally expensive strategyl. The dternative strategy

* The first author is a Senior Member of |EEE. Both authors were partially supported by the Natural Sciences and
Engineering Research Council of Canada. A preliminary version of this paper was presented at the 1994 International
Workshop on Syntactic and Statistical Pattern Recognition, Nahariya, | srael, October 1994.

INonparametric schemes are not necessarily computationally expensive. Given n data points the nearest neighbours can
be computed in Euclidean spacein O(log n) time. However, the question of computing the nearest neighbours fast when
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involves modeling the class conditiona densities parametrically. The parameters of the individua
densities are then estimated in the learning (training) phase. The testing phase involves utilizing
the features of the test sample in a computation which usually uses the estimated parameters of
the individua class densities. Thus, though there may be thousands of training samples, the
testing phase does not compare the test sample with every one individualy. Instead, it
"generalizes' the properties of the overall class by examining the features of the individual
samples. This "generdization" is achieved by the system learning the class densities, and the
"generalized" information is stored in terms of the functional form of the density and its estimated
parameters.

The problem in syntactic PR is quite similar except that the solutions are far more complex
because there is no known metric which can effectively cluster strings. A typical syntactic PR
problem involves comparing a noisy string with every element of a dictionary, H. Analogous to
the scenario in datistica PR, the problem of classification can be greatly smplified if the
dictionary is partitioned into a set of sub-dictionaries -- analogous to obtaining the various class
conditional densities. In this case, the classification can be hierarchical -- the noisy string can be
first compared to a representative element of each sub-dictionary and the closest match within the
various sub-dictionary can be subsequently located. The entire problem of sub-dividing a set of
strings into subsets where each subset contains "similar” strings is caled the "String Taxonomy
Problem".

To our knowledge there is no reported solution to this problem. Indeed, in his plenary talk
a CPM 1992, The Third International Symposium on Combinatorial Pattern Matching, in
Tucson, Professor Ehrenfeucht from the University of Colorado, a pioneer in this field, spoke
elaborately about the problem [8]. He spoke about the complexity issues that shroud this problem
and challenged the audience to tackle it2. Apart from the other issues that the authors of this
paper learned from the talk, it was also clear that a good taxonomic scheme would have to not
only utilize the dissimilarities between the strings as evaluated by an appropriate metric, but
additionally incorporate an effective learning mechanism which would infer the dissmilarity
between a string and a set of strings from the corresponding dissimilarities between the individua
strings themselves. The solution presented in this paper attempts to meet that goal.

One of the fields where string taxonomy will be very powerful is in molecular biology.
Currently, there is a great deal of research investigating the mutations of molecules such as those
seen in RNA sequences. In their simplest forms, these molecules can be viewed as long strings of
letters which represent their component bases [3,27,39]. It is well known that these sequences

the data points are strings (i.e., non-Euclidean) is still an amazingly interesting research problem. We refer the reader
to [10] for an excellent review of classical clustering schemes.

2Thefirst author isvery grateful to Professor Ehrenfeucht for introducing him to this problem. We regret that thereis
no published record of his plenary presentation at CPM-1992.
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mutate, over time, into different sequences. In order to study these various sequences it is useful
to be able to associate them collectively. Hopefully, a good agorithm will process a set of
sequences and partition them efficiently so that those which mutated from the same source, group
together. This could, in turn, assist a researcher to identify mutated sequences without an a priori
knowledge of the source molecule. Furthermore, it could also help the researcher to quantify
how well a sequence fitsinto the grouping to which it is assigned.

1.1 Implications of Dictionary Modeling

On formulating the problem we observe that its complexity is closely related to the model
for the dictionary. First of al, observe that the first step in this modeling scenario involves
specifying the aphabet, which, in most cases, is finite. For example, the most restricted al phabet
is the binary set {0,1}, and the aphabet encountered for English text is the set of 26 characters
{a..z}. To distinguish between the words of a language, customarily, various punctuation marks
have been defined, the most common one being the "space" delimiter. In speech applications, the
individual symbols are the set of phonemes [2,39,44] and in the recognition of noisy macro-
molecules, the individua symbols are the underlying amino-acids [3,28,39].

Once the aphabet for a text processing problem (or application) has been defined, the next
guestion that is of importance is one of understanding the nature of the individua words or
strings that will be processed. We briefly catalogue each of the options reported in the literature.

In many real-life applications the dictionary used is finite. Thisis especialy true in the case
of natural languages, telephone directories, and even the vocabulary used by hospitalized
handicapped individuals [20,21,25,26]. Indeed, even in the case of written English text, various
studies have been made which indicate that large proportions of the words used in English form a
very small subset of the possible English words. In fact, Dewey [6] has compiled such a collection
and claimed that this collection, consisting of 1023 words, comprises a very large proportion of
written English text. Thus, in both string processing and string recognition it is not uncommon to
represent the dictionary as a finite set of words, and using this model, string correction can be
achieved using a suitable similarity metric [14-18,31,32,37,39,41]. The advantages of using a
finite dictionary in text recognition applications are many. First of al, the accuracy of the
recognition is very high. Secondly, a noisy string is never recognized as a word which is not in the
language, and thus, the question of "meaningless' decisions is irrdevant. Findly, the time
complexity of the computation involved in the text recognition process is typically quadratic per
word and islinear in the size of the dictionary. The complexity per word can often be decreased if
the dictionary ismodeled using atrie [17], and if the aphabet size is decreased [1, 24, 41].

When the dictionary is prohibitively large, problem analysts tackle the problem by modeling
the dictionary differently. Typicaly, it is represented using a stochastic string generation
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mechanism. The most elementary model is the one in which only the unigram (single character)
probabilities of the dictionary are required [5,13,29,38,42]. This model is aso referred to as the
Bernoulli Model. A word in the dictionary is then modeled as a sequence of characters, where
each character is independently drawn from a distribution referred to as the unigram distribution.
Typicaly, these unigram probabilities are chosen to be the probabilities of the letters occurring in
the original language. A generaization of this is the Markovian Model [2,5,13,20,21,25,26,29,
39-42,44] where the probability of a particular symbol occurring depends on the previous symbol.
Essentialy, this model is identical to the one which uses the bigrams of the language. A word in
the dictionary is modeled as a sequence of symbols where two subsequent symbols x;x;,; occur
with the probability with which they occur in the language. Both the Bernoulli Model and the
Markovian Model have been used to analyze various pattern matching and keyboard optimization
algorithms and the associated data structures that are encountered, such as suffix trees and their
generalizations (See the references listed above). Models which utilize the positional bigrams (and
their variants) of the language have also been reported (See references in [37,41)).

In this paper, we shall present a solution which, to our knowledge, is the first reported
solution to the string taxonomy problem. In particular, we shall assume that we are dealing with a
finite dictionary, H ={ X1,...X 3} . We intend to partition H into K equi-sized sub-dictionaries. The
problem of partitioning H into unequally sized sub-dictionaries is still open. Although the case
when H is modeled using a Bernoulli/Markovian model is open, we believe that these are
relatively smpler to tackle than the finite dictionary case because, in these cases, the
characteristics of the sub-dictionaries can be learned usingstatistical PR training methodologies.
We believe that in these cases the heart of the problem will involve systematic estimation
procedures, and we are currently working on characterizing and formulating how these
procedures can themselves be formalized.

[1. LEARNING AUTOMATA AND OBJECT PARTITIONING

Our solution to the string taxonomy problem involves Learning Automata (LA). LA have
been used to model biologica learning systems and also to learn the optima action which a
random environment offers. Learning is achieved by interacting with the environment and
processing its responses to the chosen actions. LA have various applications including parameter
optimization, statistical decision making and telephone routing [27,33,35,36,43]. An excellent
book by Narendra and Thathachar [27] contains areview of the families and applications of LA.

The learning process of the LA can be described as follows. The LA is offered a set of
actions by the environment, and it is constrained to choose one of these actions. On choosing an
action it is either rewarded or penalized by the environment with a certain probability. A LA is
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one which learns the optimal action, which is the action that has the minimum penalty probability.
Hopefully, the automaton will eventually choose this action more frequently than other actions.

Stochastic LA can be classified into two main families : (a) Fixed structure stochastic LA
and (b) automata whose structures evolve with time. Examples of the former type are the Tsetlin,
Krinsky and Krylov automata [27,36,43]. The latter automata are caled variable structure
stochastic automata because their transition and output matrices are time varying, in practice, they
are merely defined in terms of action probability updating rules [27].

A FSSA isaquintuple (a, F, b, F, G) where:

0] a ={ay, ..., ar} isthe set of actions that it must choose from.

(i) F ={fy, .., fg} isitsset of states.

@ii)b ={0, 1} isits set of inputs where '1' represents a penalty and '0" a reward.

(iv)FisamapfromF x b to F. It definesthe transition of the state of the automaton on
receiving an input. F may be stochastic.

(v) GisamapfromF to a, and determines the action taken by the automaton if itisin
state fi. With no loss of generality G is deterministic [27,36,43].

The selected action serves as the input to the environment which outputs a stochastic
response b(n) at time 'n’. b(n) is an element of b = {0,1} and is the feedback response of the
environment to the automaton. The environment penalizes (i.e., b(n) = 1) the automaton with the
penaty cj, which is action dependent. On the basis of the response b(n), the state of the
automaton f(n) is updated and a new action chosen at (n+1). Note that the {cj} are unknown
initially and it is desired that as a result of interaction with the environment the automaton arrives
at the action which presents it with the minimum penalty response in an expected sense.

In this paper we propose that the string taxonomy problem be solved by viewing the
problem not as a estimation or parameter-based training problem, but instead as one that fallsin
the domain of object partitioning problems. The goal is not just to find strings in H that match
other strings, but to group all similar strings together so that subsequent searches will proceed
much faster. Thus, instead of using some classification method which stipulates the membership
of the strings into groups, the system adaptively decides the grouping by extracting information
about relative resemblances between the various elements when they are considered in pair-wise
comparisons. The algorithm uses previous sub-dictionary patterns to intelligently partition the
entire dictionary to obtain a superior partitioning. Furthermore, the solution not only decides the
groupings but also quantifies the "closeness of fit" of how well the strings belong to this sub-
dictionary.

There are many advantages to this approach. Unlike estimation methods, the finite
dictionary can be quite genera. Instead, the pairs of strings are individually compared to achieve
the learning. Also, the technique is adaptive. Furthermore, unlike heuristic methods [7,30] which
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can merely impose a user's criterion for closeness between two strings, we can now generdize a
closeness criterion to extrapolate whether a string belongs in a potential sub-dictionary. Finally,
(and far from being insignificant -- especialy when the strings are long and the dictionary is large)
there is no human intervention required to decide on a "best" string for each sub-dictionary. The
system automaticaly and adaptively stipulates its own "best" representative for every sub-
dictionary.

The strategy utilized in this paper utilizes the philosophy of the Object Migrating Automaton
(OMA) that is powerful in equi-partitioning [35,36,46]. In the interest of brevity, we omit the
description of the OMA here and refer the reader to [35,36] for its structural details and for a
review of the other reported solutions to equi-partitioning. In passing, we would like to mention
that the OMA is extremely accurate and fast -- experimentally, it converges to the true solution all
the time, and does so with a speed which is an order of magnitude faster than the scheme due to
Yu et. al. [46] especially when dl the objects are initialized to be in the respective boundary
states.

[11. AUTOMATON-BASED STRING TAXONOMY

Note that we have assumed that H={ X1,...X 3} is to be partitioned into K equi-sized sub-
dictionaries. To do this, we first specify how the strings themselves are to be compared. Various
numeric and non-numeric measures relating two strings have been reported in the literature. Some
of the numeric measures [1,9,11,12,14-17,19,22-24,28,31,32,37,39,41,45] include the
Generalized Levenshtein Distance, the Length of their Longest Common Subsequence (LLCS)
and the Length of their Shortest Common Supersequence. Indeed, in [14,15] a common basis for
al these numerica measures has been specified. Although in this paper we shall quantify the
similarity between two strings using a function of their LLCS, by virtue of the results in [14,15]
we believe that any of the numeric measures catalogued there will yield comparable results. We
define SIm(X,Y), the similarity between X and Y as the normalized LLCS defined as follows:

Smx ) = ZHLEL)
For example, if X="AATGCC" and Y="ATGCA", their LLCSis4, and Sm(X,Y) is0.7273.

To make a scheme arrive at an efficient partitioning we require it to migrate pairs of strings
between the partitions based on this similarity metric ; we shall require that the automaton reckon
X and Y to be classified together if the Sm(X,Y) is greater than a user-defined threshold, g.
Throughout the first part of this study we have set the threshold g to be 0.5. In the latter part of
the study when we attempt to hierarchically partition the dictionary into sub-dictionaries and
partition each sub-dictionary into sub-sub-dictionaries, we have set q to be 0.5 at the first level
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and to be 0.7 at the "leaf" level3. By computing the Sim(X,Y') between each pair of strings and by
systematically utilizing a table of smilarities the automaton must adaptively learn how to partition
H effectively.

3.1 The String Taxonomy L earning Automaton
The LA presented here, called the String Taxonomy Learning Automaton (STLA), utilizes
the philosophy of the OMA and assumes that there is an underlying unknown grouping. When the
algorithm is initialized (i.e., before the partitioning algorithm is invoked) the elements of H may
be randomly scattered among the various sub-dictionaries. Hopefully, as the learning proceeds the
STLA will utilize the smilarity between the strings intelligently and migrate them so that similar
strings are associated together.
We define the String Taxonomy Learning Automaton (STLA) as an 8-tuple as below :
(H,{f1,fo ... fkn}s {21, a2, ..., ak}, b, Q, G, M, Z), where,
(i) H={Xq,..Xj} istheset of strings.
(i) {fq,fo ..., fxn} iSthe set of states.
(i) {ajg, ap, ..., ak} isthe set of K actions, each representing a certain sub-dictionary
into which the elements of H must fall.
(iv) b={0, 1} isitsset of inputs where '1' represents a penalty and '0" a reward.
(v) Q, thetrangtion function specifies how the strings should move between the various
states and is quite involved. 1t will be explained in detail presently.

(vi) The function G partitions the set of states for the sub-dictionaries. For each action
aj, thereis a set of states{f j_)n+1, - fjn}, Where N is the depth of memory. Thus,

G (fj) = a if G-DN +1 O i O |N
(1)
This means that the string in the automaton chooses a4 if it isin any of the first N
states, it chooses a; if it isin any of the states from f 41 to foy, etc. We assume ;.
1)N+1 to be the most internal state of action a; and fjy to be the boundary state.
These are called the states of MaximumCertainty MinimumCertainty respectively
(vil) M isthe set of Similarity Measures*, SSm(X,Y) between all pairsin H.

(viii) Z isthe set specifying the strings deemed to be individually similar. It is stored as a
list in which the adjacent elements <z,z,,1> (where k is odd) are strings whose

similarity index is greater than q.

3The possibility of adaptively determining the value of g was suggested by an anonymous referee. Although this
promises to be an interesting avenue for further research, we are unsure about how such an updating rule for g can be

devised. Indeed, we are not even sure how we can decide, at every iteration, whether q should be increased or
decreased.

4In clustering literature, M (or rather its" complement") is also called the " Dissimilarity” Matrix.
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Asin the case of the OMA, we shall require that all the elements of H move around between
the states of the machine, and thus it is distinct from traditional learning automata. Also, if X is

in action aj, it signifies that it is in the sub-dictionary whose index is j. Observe too that if the

states occupied by the strings are given, the sub-dictionaries can be trivially obtained using (1) .

Thiswill thus completely specify the set of sub-dictionaries dictated by the STLA.
Let wi(n) be the index of the state occupied by X; & H at the nth time instant. Based on

{w;(n)} and (1) let us suppose that the STLA decides a current partitioning of H into sub-

dictionaries. Using this notation we shall later describe the transition map of the STLA.

Firsgt of all, observe that the different states within a given sub-dictionary quantify the
measure of certainty that the scheme has for a given string belonging to the sub-dictionary in
guestion. At system dtart-up al the strings are placed in the boundary state (of
MinimumCertainty) of their initially randomly chosen sub-dictionaries indicating that the scheme
is initialy uncertain of the placement of all the strings. As the learning proceeds, smilar strings
will be rewarded for their being together in the same sub-dictionary and they will thus migrate
towards their most internal state of the sub-dictionary -- their corresponding states of
MaximumCertainty. Likewise other strings will be penalized and are either moved towards their
boundary state or to another sub-dictionary, indicating the system's ambiguity in associating them
to the current sub-dictionary.

Initially, the STLA begins its learning process by evaluating the table of similar string pairs
Z asfollows. Consider the strings X, and X,,. First of al a function which computes the similarity

between them is invoked and the result is stored in the array M. Whenever the strings X, and X,,
are reckoned similar (i.e.,, Sim(X,, X,) O q), X, and X,, are appended to Z.

The agorithm now moves into its main learning loop. The list Z is now traversed repeatedly
and consecutive similar elements X, and X,, are processed. If they are both assigned to the same
sub-dictionary, the automaton (and in particular, X, and X,) is rewarded. However, if they are

both assigned to distinct sub-dictionaries, the automaton is penalized. This mode of penalizing is
called the PenalizeSmilar Srings mode, because, in this mode, strings which are actualy similar
are assigned to distinct sub-dictionaries, and the partitioning is therefore to be penalized.

After the complete list Z has been processed, the algorithm moves into the second phase of
the learning which involves comparing each string to the best representative of its currently
assigned sub-dictionary. For each sub-dictionary, this string should be the one which is currently
most "certain” of its assignment. Typicaly, this string is the one which has received the most
rewards for being in that sub-dictionary. Since the state occupied by a string represents the
confidence of the automaton being in the current partitioning, for each sub-dictionary, we define
its representative as the one which is closest to its most internal state. The second phase of the
learning proceeds as follows. Every string that is dissimilar to the best representative of its current
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sub-dictionary is stochastically penalized by attempting to migrate it to another sub-dictionary --
to the one whose best representative is most similar to the string in question. The stochasticity for
the transition will be explained presently. As opposed to the previous mode of penalizing, this
mode is called the PenalizeDissimilar Srings mode, since the pendizing is caused by dissimilar
strings being assigned to the same sub-dictionary.

The cycle then continues to the next iteration where both the algorithm's phases repeat.

We now describe the actual transitions described by Q for each of these operations.

(i) Transtionsfor Rewards
On being rewarded, since X, and X,, are in the same sub-dictionary, say, aj, both of them

are moved toward the most internal state of that sub-dictionary, fj_1)n+1, ONe step at atime. See
Figure l(a).
(i) Trangtionsfor Penalties: PenalizeSimilar Strings M ode

This is the case encountered when two similar strings, X, and X,,, are located in distinct
sub-dictionaries. Let us assume that X, and X,, lie in different sub-dictionaries, say aj and ap,
respectively, (i.e. X isin state wy, where wa{f j.1)n+1,- fjn}, and Xy isin state w, where w, &
{f (M-D)N+Ls -+ fmnt)- Then they are moved away from fG-N+1 and f(m-1)N+1 asfollows:

a Ifwe fin and w, 8 fpN, then move X, and X,, one state towards fin and f N
respectively. (Move them towards the boundary states.) See Figure 11(a).

b) If at least one of X, or X,, isin the boundary state of MinimumCertainty, (i.e. either
wy= fijn OF wy, = f) , then move the string in the boundary state, say X, to f yy;, the
boundary state of a,,. In this case, since this will result in an excess of stringsin ay,
one of the strings in a, other than X, is moved to fjy, the boundary state of aj. We
choose to move the one closest to f,. See Figure [1(b).

(iif) Transitions for Penalties: PenalizeDissimilar Strings M ode

In the second phase, every string, U, that is dissmilar® to the best representative of its
current sub-dictionary, say aj, is penalized stochastically with a probability which isinitially set to
zero and incremented as the learning continues. This means that initially, the second phase will be
seldomly invoked, and as the learning proceeds, this phase will be invoked more frequently. Let
us suppose that the string U isin state wy. If both U and Y are not in the boundary state, they are
merely moved towards the boundary by one state. If, however, U is in the boundary state, the
scheme opts to migrate U to another sub-dictionary. In order to achieve this, the algorithm first of
all, searches for the best sub-dictionary to which it should be migrated. This is done by searching
among the sub-dictionaries for the one whose best representative is most similar to U. Let us

5/n the experiments conducted, the definition of similarity was slightly modified for the second phase. In the first phase,
wereckoned X and Y to be similar if Sim(X,Y) was greater than Q. In this case, the strings wer e reckoned to be similar
if Sim(X,Y) was greater than or equal to Q-0.1. Thiswas purely a subjective choice.
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suppose that this sub-dictionary is ag,. The string closest to the boundary state of ag, iS now
moved to the sub-dictionary of U and U in turn is migrated to the sub-dictionary ag,. The

analogous migration isdoneif Y isin the boundary state but not U. See Figures I11(a) and (b).

The actua algorithm for the STLA isformally presented in the Appendix.

Note that although the fundamental principles involved in the individua migrations are
based on the philosophy used in the OMA (namely, the Tsetlin-like transitions on being rewarded
and penalized), the algorithm is completely different. The primary differences are the following :

(1)  Unlike the OMA where the migrations are done "on request” (i.e., when a user performs a
guery), in the STLA the migrations are performed for all smilar pairsin Z.

(i) Unlike the OMA, which has no way of penalizing "non-accessed elements’ the STLA has
a strategy of penalizing them by considering how similar the strings within the same sub-
dictionary are. Clearly, this cannot be done in the OMA because, in that case, the system is
absolutely dependent on the users queries. In the present case the system can quantify
how fitting a string is for a sub-dictionary, because M isreadily available.

(i) Unlike the OMA, comparing elements to the best representative of a sub-dictionary has
been introduced for the first time in the STLA. In statistical PR this can be done because
the mean for a class can serve as its representative. In this case, although such a mean
does not exist, the string closest to the most internal state can be reckoned to be the string
that best represents that sub-dictionary. This has rendered the second phase of the loop
possible -- permitting the migration of a dissmilar word from its current sub-dictionary to
another.

(iv) Finaly, the concept of stochastically migrating dissmilar elements is new to the STLA.
This has rendered the second phase of the algorithm to be rather irrelevant in the initial
stages of the agorithm and to be more frequently invoked once the strings tend to find
their rightful places. Of course, this concept cannot be used in the traditiona OMA
because, in the latter, the question of comparing "dissmilar" elements never occurs.
Indeed, in the OMA, whenever the user requests two elements they are assumed to be
similar, and thus the objects migrated are fully controlled by the users query stream.

IV.EXPERIMENTAL RESULTS
The STLA has been rigorously tested and the results that we have received are quite
fascinating. The data which was used was obtained from three sources. In the first set of
experiments the data consisted of noisy strings obtained from English words. In the second set of
experiments, the data was obtained by using long noisy English sentences in which the delimiter
information (found in the locations of the spaces) was discarded. The final experiment consisted
of adictionary of mutated noisy substrings of biochemical macromolecules. The results of each of
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these experiments is given in the following subsections. Before we describe the details of the
experimental results we first present a short description about the noisy string generation
process.

4.1 Noisy String Generation

Let us suppose that we have to obtain a noisy version of a string U & A", where A is the
aphabet under consideration. The generation process assumes the definition of three
distributions, G, R and S defined below. G is a distribution over the set of positive integers and
defines the number of insertions performed in the mutating process and it satisfies :

ace =1
z[0
Examples of the distribution G are the Poisson and the Geometric Distributions.
The second distribution required is the distribution R, where the quantity R(a) is the probability
that ad A will be the inserted symbol conditioned on the fact that an insertion operation is to be
performed. Notethat R has to satisfy the following constraint :

a R@ =1
aaA

Finally, apart from G and R, the generation requires a probability distribution S over A X
(A»{1}), where | isthe null symbol. Sis caled the Substitution and Deletion Distribution. The
quantity S(bja) is the conditional probability that the given symbol aa A in the input string is
mutated by a stochastic substitution or deletion -- in which case it will be transformed into a
symbol ba (A » {1}). Hence, S(cla) is the conditional probability of a& A being substituted by ¢
a A, and andogoudly, (I |a) is the conditional probability of aa A being deleted. Observe that S
has to satisfy the following constraint for all a& A :

Error!, , S(bla) =1

Using the above distributions we now describe the garbling algorithm (the noisy string
generation process). Let |U| = N. Using the distribution G, we first randomly decide on the
number of symbols to be inserted, say, k. The agorithm then determines the position of the
insertions among the individual symbols of U. In this case, each of the (N+k)! /(N! k!) possible
positions are assumed equaly likely. The actual symbols of U which are not at the inserted
positions are now substituted or deleted using the distribution S. Finally, the individual symbols of
the alphabet are inserted using the distribution R at the inserted positions.

The above process has been shown to be stochastically consistent and functionally complete
[34] and is to our knowledge, the only reported method by which noisy strings with arbitrary
noise characteristics can be generated. Since our intention was to rigoroudly test the STLA for
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various mutations of strings, noisy strings were generated using this generation scheme and these
strings served as the input for the partitioning algorithm.

4.2 Experiment | : Short Noisy English Strings

The first set of experiments involved studying the partitioning ability of the STLA for noisy
English strings. Eight sets of strings (atotal of eighty) were generated from an initial set of eight
root words. The number of insertions permitted was distributed geometricaly and the
substitutions were generated using a confusion matrix based on the proximity of keys on the
typewriter keyboard. Some of the noisy strings generated are :
engineering £ A enneeriunjk, jngineeving, gagibmfring, sngdnegering}
psychology £ A psycfgholgy, psvholsgy, psychafogy, psychocogr }
mathematics &£ {  mahematrcs, marhecatics, madhemaics, tathematigs }

A complete list of the eight strings generated is given in Table |. The set of noisy strings was
then specified as the input to the STLA without the latter knowing their origin. The eighty strings
were randomly assigned to the eight sub-dictionaries and placed at the corresponding boundary
states. The STLA was then invoked and after the initial preprocessing which involved evauating
the inter-string similarities, the various strings were migrated. Table la and Ib list the initial and
final partitionings respectively. Note that finally, all the eighty strings were correctly partitioned --
without individually comparing each of them to a "template" string as would have been the

strategy employed by atraditional syntactic PR environment. The power of the scheme is obvious
I

4.3 Experiment Il : Long Strings of English Characters

The second set of experiments involved studying the partitioning ability of the STLA for
long strings of English characters. Ten sets of noisy strings were generated from ten origina
strings of length approximately 50. A typical original source string used was :

"some of the worlds best water skiers come from canada’'.
Since there is considerable information in the delimiter, space, the latter was removed, yielding
the corresponding source string to be :

"'someoftheworl dsbestwaterskierscomefromcanada’
The strings were then noisily garbled using the above described garbling mechanism, where, as
before, the number of insertions permitted was distributed geometrically and the substitutions
were generated using a confusion matrix based on the proximity of keys on the typewriter
keyboard. A typical noisy string obtained as a result of the garbling was :

"'someofwhewcrmdsbestzbergitrseomef somcandds”
The set of one hundred noisy strings served as the input to the STLA. The strings were randomly
assigned to the ten sub-dictionaries and placed at the corresponding boundary states. The STLA
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then migrated the strings using its reward and penalty transition maps. Table Il shows the final
partitioning in which all the hundred strings were correctly partitioned. Again, the power of the
scheme is clear especially when we redlize that the system is absolutely unaware of the original
strings which generated the elements of the dictionary, and thus it did not have any "error-free"
fixed string to which it could compare the noisy strings to. Also note that the performance of the
STLA isnot forfeited by extracting the crucial inter-word delimiter information.

4.4 Experiment |11 : Taxonomy of Mutated Macromolecules

In the final set of experiments we studied the power of the STLA to partition
macromolecules in a hierarchical fashion. Consider the following mutating process. Let us
suppose that we started the process with a set of macro-molecules { X1, X2, .., X3}. Each X; is
randomly mutated to yield a new set of molecules for the "next generation”. For the string X; we
refer to the latter set as { Xj1, Xi2, .., Xik}. Now, for the subsequent generation, each Xjj is
further mutated to yield a set of new macromolecules { Xij1, Xij2, .., Xijm}. The dictionary, H, in
this case consists of the entire set of strings,

H={X112,X112,- - X11M 1+ X IK 1,X 1K 21, X IKM - X1 Xij 210 X jM, 00 X K LXK 21000 X IKMY -

The task of partitioning is now much more complex than what was studied in the earlier two
experiments. By alowing a "tree" of STLA to process H, we intend to hierarchically partition H
not only in the respective sub-dictionaries, but also to partition each sub-dictionary into the
corresponding "sub-sub-dictionaries’. Of course, the basic premise for the whole experiment is
that the tree of STLA is unaware of the origina set of macro-molecules, { X1, X2, .., X3}, and
consequently, the individual machines are constrained to partition them by just comparing noisy
strings with other noisy strings.

The data for the experiment was obtained from The Atlas of Protein Sequence and
Structure [3, page D81]. The task of the STLA at the lowest level (the level closest to the root)
was to partition the JKM elements into J sub-dictionaries. At the next level, each of these sub-
dictionaries was processed by another STLA whose task was to partition its input (which was a
sub-dictionary) into K sub-sub-dictionaries.

In this set of experiments the strings used were substrings of the following proteins :

(1)  myoglobin from the harbour seal,

(i)  the human hemoglobin gamma chain

(ili) ferradoxin obtained from spinach, and,

(iv) adrenodoxin obtained from bovine.
The composition of these proteinsis givenin Tablellla.

These four long strings were first mutated by garbling approximately 25% of the string
through the mechanism described earlier. Unlike the previous cases, where we worked with the
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English alphabet and the typewriter keyboard, in this case the noise generation was based on a
subjectively created "random” confusion matrix which caused the individual molecular symbols to
be substituted, inserted and deleted. For the first level, the fragment of the string (approximately
25%) which was mutated was randomly chosen. This was repeated for the four randomly chosen
guarters, and thus 16 mutated strings were obtained from the original four. At the next level each
of these sixteen were further mutated, and in this case, to further accentuate the garbling process,
the entire string was rendered noisy. This yielded the total input set of 64 noisy strings.

The set of 64 strings were now classified at the "root" level into four sub-dictionaries using
asingle STLA. For the initidlization stage, they were first randomly distributed into the four sub-
dictionaries and assigned positions at the boundary states of these dictionaries. Subsequently, at
the "leaf level" four distinct STLA operated in paralel on the sub-dictionaries to further partition
them into sub-sub-dictionaries. At this level, the value of q was set to be 0.7, and thus the STLA
asserted that two strings were similar only if their similarity index was greater than or equa to
0.7.

The hierarchy of STLA performed very elegantly. In this case, al the strings were correctly
partitioned into their respective sub-dictionaries, and the sub-dictionaries were also correctly
partitioned. Consequently, the scheme could correctly learn the entire pattern of the proteins
without a priori information of the molecular compositions of the original "source" proteins.

A subset of 16 of the 64 strings clustered in their sub-sub-dictionariesis given in Table [11.

Observe that the clustering is achieved without comparing each of the strings to a template,
but by merely comparing them between themselves and migrating them using "smilar-dissmilar
decisions’ as dictated by the STLA. The power of the hierarchy of STLA isclear.

4.5 Drawbacks of the STLA

Although the STLA is powerful and, to our knowledge, is a pioneering contribution to the
entire area of string taxonomy, it till, unfortunately, has some noticeable drawbacks. The first
major disadvantage of the scheme is that it assumes that the dictionary can be equi-partitioned.
First of al notice that using techniques similar to those utilized in [35,36,46] this problem can be
shown to be NP-Hard. With a little insight it is easy to see that the equi-partitioning constraint
trandates into the "equally likely" scenario for the a priori distributions of the classes traditionally
used in statistical PR. The case when the sub-dictionaries are not equally sized, is yet open. If we
know the relative sizes of the sub-dictionaries, we believe that the problem is still tractable using
ideas similar to the STLA, because, the current size of a sub-dictionary would inform us whether
anew entry would require the migration of another element or not. But if the relative sizes of the
sub-dictionaries are themselves unknown, the problem is yet unsolved. We are currently
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investigating whether our solution to the underlying partitioning problem [36] can be adapted
here.

The second major drawback of the STLA isthat it requires the computation of the pair-wise
smilarity of al the stringsin H. Thisistypical of al "nearest neighbour" type agorithms, and thus
usually, cannot be circumvented. However, in this case, since the string in the most internal state
of a sub-dictionary can be viewed as its most ideal representative, we believe that we can merely
use a comparison between an element and the various "best representatives'.

V.CONCLUSIONS

In this paper we have presented, to our knowledge, the first reported solution to the "String
Taxonomy Problem™ which can be utilized to enhance the capabilities of any syntactic PR system.
Typicaly, such a system compares a noisy string with every element of a dictionary, H. The
problem of classification can be greatly smplified if the dictionary is partitioned into a set of sub-
dictionaries, because, in this case, the classification can be hierarchical. In its generality, the
"String Taxonomy Problem” involves the problem of sub-dividing a set of strings into subsets
where each subset contains "similar™ strings. In this paper we have presented a learning-
automaton based solution to the problem. The solution is the String Taxonomy Learning
Automaton (STLA) which has been developed using the same philosophy as that used in the
Object Migrating Automaton (OMA) whose power in clustering objects and images [33,35] has
been reported. The power of the scheme for string taxonomy has been demonstrated using
random strings and garbled versions of string representations of fragments of macromolecules.
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Tablel : String Taxonomy of Short Strings
Tablela: List of Strings Prior to Taxonomical Analysis

Sub-dictionary : wy Sub-dictionary : w,

String_index  State  String String_index State  String
0 9  gagibmfring 10 19 architecnure
1 9  comelpfxity 11 19 photograpmy
2 9 psychqgfogy 12 19 cohjvlerity
3 9  axcliwectur 13 19 engineaarrng
4 9 sngdnegering 14 19 arkhitezturx
5 9  engineerina 15 19 psgeochelogy
6 9  eyginring 16 19 madhemaics
7 9 afgpritaamic 17 19 guohrafhijjq
8 9 engitzering 18 19 ensineering
9 9  pmvchomog 19 19 psychokogy
Sub-dictionary : wg Sub-dictionary : wy

String_index  State  String String_index State  String
20 29 goraphicdeq 30 39 mahematrcs
21 29 geogrpphical 31 39 dgorichroc
22 29 mathematics 32 39 gvograuhicap
23 29 photigraphy 33 39 acgwtithmic
24 29 irchatmcturi 34 39 marhecatics
25 29 photogravhy 35 39 veograpaica
26 29 marhematics 36 39 muthematzilo
27 29 arghitecjure 37 39 eogrophicalg
28 29 mayhematias 38 39 photography
29 29  psecholody 39 39 guographicah
Sub-dictionary : wg Sub-dictionary : wg

String_index  State  String String_index State  String
40 49  zomplexipy 50 59 jngineeving
41 49 gaographieac 51 59 psychojojy
42 49 archytemtrre 52 59 ptotsogrdphy
43 49  Kklotogrrpur 53 59 photagroihy
44 49  abchiteptgrey 54 59 dgorithmil
45 49 complekity 55 59 geoeraphica
46 49 architicjtge 56 59 olgorrtmic
a7 49 engieeering 57 59 psychocogr
48 49 architqcture 58 59 geogcrgphiccl
49 49  enneeriunjk 59 59 dgorivhmiz
Sub-dictionary : wy Sub-dictionary : wg

String_index State  String String_index State  String
60 69 tomplexahy 70 79 tathematigs
61 69 amroritwmic 71 79 mzsheiatice
62 69 nrchitemthre 72 79 atgorithmic
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63

65
66
67
68
69

69
69
69
69
69
69
69

psycfgholgy 73
uathematics 74
argorimid 75
komplexity 76 79
phjcolocq 77
xhonogradhz 78
phytograpsy 79
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79 agowithmic
79 psvholsgy
cofplexisy

79 phsdtoygapy
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79 comolpity



String_index  State

70
26
22
64
71
34
30
28
16
36

OO OOOONDNWOU

Tablel : String Taxonomy of Short Strings

TableIb: List of Strings After Taxonomical Analysis
Sub-dictionary : wy

String
tathematigs
marhematics
mathematics
uathematics
mzsheiatice
marhecatics
mahematrcs
mayhemeatias
madhemaics
muthematzilo

Sub-dictionary : wg

String_index  State

75
57
19
9

67
51
29
15
2

63

20
20
20
20
20
20
20
20
20
20

String
psvholsgy
psychocogr
psychokogy
pmvchomog
phjcolocq
psychojojy
psechol ody
psgeochel ogy
psychafogy
psycfgholgy

Sub-dictionary : wg

String_index  State

46
42
27
10
48
a4
14
3

62
24

42
40
40
40
40
40
40
40
40
40

String
architicjtge
archytemtrre
arghitecjure
architecnure
architqcture
abchiteptqrey
arkhitezturx
axcliwectur
nrchitemthre
irchatmcturi

Sub-dictionary : wy

String_index  State

53
77
69

61
61
60

String
photagroihy
phsdtoygapy
phytograpsy

Sub-dictionary : w,
String_index  State

0
5
18
49
13
8
6
4
47
50

Sub-dictionary : wy
String_index State

17
20
21
32
39
55
58
35
41
37

Sub-dictionary : wg
String_index  State

72
7

74
59
56
54
61
33
31
65

Sub-dictionary : wg
String_index  State

78
45
79

11
11
10
10
10
10
10
10
10
10

String

gagibmfring
engineerina
ensineering
enneeriunjk
engineaarrng
engitzering
eyginring
sngdnegering
engieeering
jngineeving

String

39  guohrafhijjq

31
31
31
31
31
31
31
30
30

59
51
50
50
50
50
50
50
50
50

70
70
70
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geogrpphical
gvograuhicap
guographicah
geoeraphical
geogcrgphiccl
veograpaica
gaographieac
eogrophicalg

String
atgorithmic
afgpritaamic
algowithmic
algorivhmiz
olgorrtmic
algorithmil
amroritwmic
acgwtithmic
algorichroc
argorimid

String
jkgplexgby
complekity
comolpity



38
25
23
11
43
68
52

60
60
60
60
60
60
60

photography
photogravhy
photigraphy

photograpmy
klotogrrpur

xhonogradhz
ptotsogrdphy
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70
70
70
70

tomplexahy
yomplexity
cohjvlerity

comelpfxity
zomplexipy
cofplexisy

komplexity



Tablell : String Taxonomy of Long Strings after Analysis

String_index  Sub-dictionary  String
52 1 someoftheworudsbestwateaski eryxomafromeanada

41 1 shmeofthewrldsbestwaterskierscoxefromcfnada

29 1 somooftheworldsyestoaterskixrocpmefromcanada

28 1 someofwhewcrmdsbestzbergitrseomef somcandds

9 1 someof mhwworldsbasxwaherskvmrswfmefrxmcanada
7 1 domeoltjezorl dsaebtwatwrsniecscomifrnmctgada

4 1 sosemfthpworywsbestwaterskierscomeffomcansda

72 1 soopofthewdrdsbestwaterstiersmomegrymcanafa

53 1 someoftheworlvshestwaeqrskierscomefromcanada

73 1 iomegftheworl dsbestwateskiergcomefromdandda
String_index  Sub-dictionary  String

1 2 nhvarinfylifehavqievrbeentonorthwettteruttorvs

0 2 nevgrinyei sel aveieverbeeqtongrthwimttedritopies
81 2 ieverinmylieuhavpieixrbegntonojthwemqterritories
70 2 revhrinmylbfel zvegevdrbefntonovtowesttlrritssves
58 2 neverinmyofehavievzrbeektunortiwesttergitories

84 2 neaerinmylifchave envrbeenbonortgwestterrimorpzk
37 2 neveriemylifentlesel erbecntonorrhwvstuerritories
27 2 nevfribmyyieehaveuevnrbvntonozthaehtyyrritolkis
18 2 keverinmgcikemayesevecfeentonortzwesttergigorien
93 2 nzverinlylzfehavei ecerbeentonorthwestlerzitories

String_index  Sub-dictionary  String

68 3 aachitectural stabnwxunsyregj phiknyincdegzate
63 3 architeczural stmiwhnspreadthtvlyisadzquate
60 3 arcgitectfral stwpnbhenshreadthinlvisamequhte
57 3 arcjilvctural stainwhenseroadthi slyisadequate
55 3 xmhikcctural staigwhpnsxreadthjzlyi sadeeuate
30 3 architecxural stainwyenspreadthenayisadequate
22 3 architkctkral stainwzensfrearthjnkynsaoequate
13 3 arcvitectjrrlstazndhenspreudthiwlyisaxequate
90 3 arahiteorjral stainwhenspreadshinlyisadoquate
76 3 architecturmlatai ndjenspreadthjnlyisadequage

String_index  Sub-dictionary  String

80 4 haveyoilvrbefntoazodi nwjxghquabl giraffebhbound
94 4 haveyoeveybeenvlazooi nwhichquai ogiraffezjbgunx
79 4 haveyogeverjeentoazooi nwhichquail giraffeqglound
38 4 javtyouevegbeznkoazoounwhicxqgryiroiraf uesaboucd
89 4 nageyoueverbhewtol zpoinwhichqqiil giraffesabtund
36 4 hsvgyoul verbeentoazoobnmhl ctquail girrffesacwund
86 4 haveyouepubeentoszooi nwhichgjail girafftsabwund
35 4 eavekoueverbeeytoafai nahkchhuaiwfirtffesabound
33 4 haveyoueverbetntoazoxtnwtichquaeltieaffesrbjunz
21 4 haveyoueversegntoazyjinwhichqdlil giraffesbound

String_index  Sub-dictionary  String

40 5 seapesostreesal vuseeul forprovicinfshadefoodged
17 5 peavesgnerzesareuseft! forprovzdixghhadgfvodbed
25 5 I havesontrmesareuseful forprovidijgxhasefonrbed
71 5 loacesontrgesaredszful forprovipibgshadefoodcel
44 5 aavesontkeecxrnusetul fvrprovipscgshadef sodbed
51 5 mhavesojtrehaarenseful forrrovidrjgshadefvodbdd
32 5 |eavesontrjesarhusefhlforprovidini shadeaoodved
31 5 lepvezctrewkareusefxmforpjovidineshadefondbed
46 5 | vesonbreesai ehsef ul fl gprovidinkshaddf oodbed
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Tablell : String Taxonomy of Long Strings after Analysis (Contd)

String_index  Sub-dictionary  String

64 6 atriedanytrugmetgodof cpnwdcoptrokiszeargadowater
14 6 atal euandtruemethoqof crowdfntrol rsteargasorwatur

87 6 atriedaxdtruemethokkf croddiontrdlisheargasorwter

75 6 rkrhedandtrcemethodvhcrowbcontroyislegjasorrater

56 6 utpi hdandtruevethtdofcrswdcozsroligteargawowateo

47 6 morimlamdteuebhnhodofcrowdcontnol fvuaargasorwatm
69 6 avrietandoruemethodifcrvwdcoktrylisteargasorwater

24 6 ftzptcandtruel ethodof crowucontroli saeaugaworwater
20 6 atriedapdfkmgmethouopcroidconbrolisteargwsorwater
74 6 ytjiedandtruemethodof croddcontrolisteargasorwater

String_index  Sub-dictionary  String

77 7 orienteeringisawtyoflifpforlastuinnssced] szogu

3 7 orienteerangnsarayogl ureporosytfinnsszfmesoogs
26 7 orienkuergnjipawayoflvfeformostfinnsswedwsnogh
83 7 orienteeringwsawayofliueformostfinnsspedosnoos
97 7 osi ewteeringi sawgfofliieformtctfinnsswidesnogs
66 7 orienteeringisai ayoflifebormostfinnsswedesgodb
85 7 iuientegringilawayofqifeformul tfinnsswedesnogg
65 7 tricnteurdngifpwayvfljfeformostfinneswebesnogs
54 7 orienteerfngistwayfflzferormostfinnssweyesnogs
39 7 orienteerinucsawayiflifeformostficnsswesel npgs

String_index  Sub-dictionary  String

92 8 thijisatestoverclongstrikggollengmhmbotfifty
62 8 thidisatestofverylongsaringsoflengthaboutfifty
16 8 rhisioaeestoflerylongstringsoflengthaboctfifay
8 8 vhisiuatestofveryoongstrclusojlengthabvutfifta
6 8 hi sgsatustmfverylongrtringsoflezgthabouteifiy
5 8 tnisi satestcfverylongstrini sofledgthaboutjtfti
59 8 thisisatdstofveryfongstringscflengthabeutfifty
78 8 ghisitztestofveslongstrinjsofl egthaboutfisty

2 8 thisiaatustofverylongstripgsoflenguhhboftfjjty
34 8 khisi satestofverylongsaribmsoflekkgtuhabottfif

String_index  Sub-dictionary  String

49 9 rowmanyskeepcanasl eepsheacershearrfashwkpslecpw
45 9 howmanysteepcanbshrerohearersheafi pasheepsleeps
43 9 hkwmanyshkepcahasheepsheareyhearifasheepsveeps
67 9 ygwnnysheepcanashvxpshearedszdarifasheepsfeeps
2 9 iormaxxshwepcanasheepstgarqgrshearifasheegssoeps
19 9 hozoanysheepyanasheepshekreqshearifasheepsgbeps
11 9 iowmanysheepcabasheepsheasnrlhearmfashmeps eeps
10 9 howjanycteepcanazreexsdeai etshearifasheypsmeeps
2 9 hoemanysheepcanoshnopshl arershearifasheeps eeps
88 9 howmanysheepcvnaszhepshearrruhearifashevpsl eeps
String_index  Sub-dictionary  String
95 10 frogstladsahvalamagkers bveundetrowksangmiss
12 10 frogseadsandsplamanderslivghnderrovksandooss
91 10  frxgstobpzandsalamanderdliveunuerrocwsawdxofs
96 10  grwgstoadsandfal amandmwsbiveundoarocksandmoss
82 10  sroggdoadswndsalamddersliveuvdwrujnksandmass
61 10  fooggiodsandyal amxnderbliveungerrocksandmors
50 10  foogchoedsandsalamanpeksl eveunderrocksandmoss
15 10  gogstoadsabdmalambndorslileunderrocksandvoss
99 10 frogstoadmandsal mmanuersliveunddkroiksnndmugs
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Tablelll : Hierarchical String Taxonomy of Biological M acromolecules
Tablellla: List of the Four Original Protein Sequences
Protein source:: harbour seal
Protein Name : myoglobin
Protein Structure :
glsdgewhlvinvwgkvetdlaghggevlirl fkshpetl ekfdkfkhl kseddmrrsedirkhgntvitalggilkkkghhe-
ael kplagshatkhkipikyl efiseaii hvl hskhpaef gadagaamkkal el frndiaakykel gfhg

Protein source:: human

Protein Name : hemoglobin gamma chain

Protein Structure :
ghfteedkatitsdwgkvnvedagget! grlivvypwtgrffdsfgnl ssasaimgnpkvkahgkkvlts gdaikhlddikgt-
faglselhcdklhvdpenfklIgnvlvtvlai hfgkeftpevgaswgkmvtgvasalssryh

Protein source : spinach
Protein Name: ferradoxin
Protein Structure :

aaykvtlvtptgnvefgcpddvyil daaeeegidl pyscragscsscagkl ktgs ngddgsfl dddgi degwvitcaay pvs-

dvtiethkeedlta
Protein source: bovine
Protein Name: adrenodoxin

Protein Structure :
sssqdkitvhfinrdgetlttkgkigdd 1 dvvvzbnl didgfgacegtl acstchlifeghifekl eaitneennmbzl | dlay gl td-
rsrlgeqicltkamdnmdtvrvpdavsda

Tablelllb : A subset of 16 of the 64 Protein Sequences which were partitioned
into sub-dictionaries and sub-sub-dictionaries

Sub-sub-dictionary : w,
Sour ce : glsdgewhlvinvwgkvetdlaghggevlirl fkshpetl ekfdkfkhlkseddmrrsedirkhgntvital ggil kkkghheael kplagshatk
Mutated Strings:
houylesnxrgpwcul gvonbgetjfkfasl fkshpetl ekfdkfkhlkseddmrrsedirkhgntvital ggilkkkghheael kplagshatk
glsdgewhlvInvwgkvetdlaghggevlirwfksryglagkhsovkglksesoj rrsedirkhgntvltal ggil kkkghheael kplagshatk
glsdgewhlvinvwgkvetdliaghggevlirlfkshpetl ekf dkfkhl kseddmrshdlekheohdptqei gecfkxghheagl kplagshatk
glsdgewhlvinvwgkvetdlaghggevlirl fkshpetl ekfdkfkhl kseddmrrsedirkhgntvital ggilkkkdgheeyzfrewhgsiyc

Sub-sub-dictionary : w,

Source: ghfteedkatitslwgkvnvedaggetlgrllvvypwtqrffdsfgnl ssasaimgnpkvkahgkkvltsl gdai khl ddikgtfagl selhcdklh
Mutated Strings:

dgjjxkovagktkwopviveragyfggghaglvypwtgrffdsfgnl ssasaimgnpkvkahgkkvltsigdai khl ddlkgtfagl sel hcdklh
ghfteedkatitslwgkvnvedaggetl grllvgatxdttkfxagtntsihmangndkvkahgkkvltslgdai khiddikgtfagl selhcdklh
ghfteedkatitslwgkvnvedaggetl grlvvypwtqrffdsfgnl ssasaimgnpl vksagtj nltlhpjfbkvgddl kgtfagl selhcdkl h
ghfteedkatitslwgkvnvedagget! grlivvypwtgrffdsfgnl mgnpkvkahgkkvltslgdai khimfggnfdhsmlhcmbkdlh

Sub-sub-dictionary : w;,

Sour ce : aaykvtlvtptgnvefgcpddvyil daaeeegidl pyscragscsscagkl ktgslngddgsfl dddgi degwvitcaaypvsdvtiethkeeel ta
Mutated Strings:

naemckwkftknhrfftwmdvkml dpaeeegidl pyscragscsscagkl ktgsl ngddgsfl dddgi degwvl tcaay pvsdvti ethkeeel ta
aaykvtlvtptgnvefqcpddvyildaojfimagi pksgrevmnthtaj kl epkshngddgsfl dddgi degwvlitcaay pvsdvtiethkeeel ta
aaykvtlvtptgnvefqcpddvyil daaeeegidl pyscragscsscagkl ktgsl nfbfjmoexol ky pacwksiwasdpdi dvtiethkeeel ta
aaykvtlvtptgnvefqcpddvyil daaeeegi dl pyscragscsscagkl ktgsl ngddgsfl dddqi degwvl tcaay pvsdrpckmkzdmtbta
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Sub-sub-dictionary : w,

Source: sssqdkitvhfinrdgetlttkgkigdslldvvvzbnl didgfgacegtl acstchlifeghifekleaitneennmbzlldlaygltdrsrigeq
Mutated Strings:

aerbzblrjvferyogiltbgrupgdstinvvvzbnl didgf gacegtl acstchlifeqghifekl eaitneennmbzl I dlaygltdrsrigegi
sssgdkitvhfinrdgetl ttkgkigdsl | dnlbxqtjyfvghabpvvxryjtvpyofeghifekl eaitneennmbzl I dlaygltdrsrl gcqi
sssgdkitvhfinrdgetl ttkgkigdsll dvvvzbnl didgf gacegtl acstchlifxfhifelxgjifttcyj bzl dlaygltdrsrigeq
sssgdkitvhfinrdgetlttkgkigdsl [ dvvvzbnl didgf gacegtl acstchlifeghi fekl eaitneennmketul rauyl osnskdcbf
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APPENDI X
THE STRING TAXONOMY LEARNING AUTOMATON

PROCEDURE STLA_System
Input :  Thedictionary H = { X1,...X 3}, to be partitioned into K sub-dictionaries.

g, g2 parameters which are used to decide whether two strings are reckoned similar.
In our implementation go:= q- 0.1.

The increment to the probability parameter bnf'. In our implementation pnf := 0.05. mis
increased in each loop to a maximum of myax. TO render it avalid probability mpax < 1.

Output : The system lists the J strings as they appear in the K sub-dictionaries and their

associated states.

Notation:(i)  w; isthe state of the string X;. Itisaninteger in [1..KN], where,

if G-)N +1 0 w; N, then string X j isassigned to the sub-dictionary aj.
(i) Zisthelist of strings whose adjacent elements <zy,z,.+1> (where k is odd)
are reckoned to be similar.

Method

Initialize Z to be the empty list
Initialize Prob. parameter nf to zero
For each <X;,X;> Do

2 LLCS(X;, X)) . P
M;j = K| (*Build matrix of similarity measures*)
1 Mj; UqThen (* Build list of similar string pairs *)
Concatenate X; and X; to Z
EndIf
EndFor

Randomly initidlize w; for 1 [0 [, to the boundary states of the sub-dictionaries,
each having J strings
Initialize pointer to the Head of Z
Repeat
For X; and X the next two elements of Z Do (* Process similar elements *)
If ((w; divN) = (wj div N)) Then (*Reward partitioning *)
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Re\Nard(X,,XJ)

Else (* Penalize partitioning *)
PenalizeSimiIarStrings(Xi,Xj)
EndIf
EndFor
For al U a H Do (* Entering Phase 11 *)

Y := Representative string for current sub-dictionary of U
If SM(U,Y) <qg Then

If (Random(0,1) < nf) Then (* Randomly move U or *)
PenalizeDissmilarStrings(U,Y) (* Y from current class*)
EndIf
EndIf
EndFor
If (nf < mnax) Then
m :=nf + Dnf (*Increment prob. parameter*)
Initialize pointer to the Head of Z
Until Satisfied

END PROCEDURE STLA_ System
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PROCEDURE Reward
Input . Indicesof strings Xj and X| to be rewarded.
Output : The new states of X; and X;.
Method
If ((wy mod N) 1) Then (* Move X; towardstheinterna state *)
W =wo- 1
Endlf
If ((w; modN) 1) Then (* Move X towards the internal state *)
wWoEw - 1
Endif
END PROCEDURE Reward

PROCEDURE PenalizeSimilar Strings
Input . Indicesof strings Xj and X| to be penalized.
Output : The new states of X; and X;.

Method
If (((w mod N) [D) and ((wj mod N) [D)) Then (* Both areininternal states*)
W =wp + 1
wj =gl
Else
If (W mod N [0) Then (* Xj isinaninterna state *)
w=w+1 (* Update state of X; *)
temp = w (* Storethe state of Xj *)
wj := (v DIV .N) * N (* Move X; to same group as X *)
t := index of an word in sub-dictionary of X;
where X; X j and is closest to boundary state of w,
w; := temp (* Move X to the old state of X; *)
Else
If (w mod N) L0) Then (* Xj hasto be moved *)
w = w+1 (* Update state of X; *)
EndIf
temp 1= wj (* Store the state of X *)
w;:= (w DIV N) * N (* Move X; to same group as X; *)
t:= index of an word in sub-dictionary of X;
where Xy [X jand is closest to boundary state of w
w; = temp (* Move X; to the old state of X; *)
EndIf
EndIf

END PROCEDURE PenalizeSimilar Strings
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PROCEDURE PenalizeDissimilar Strings
Input :  Indicesof stringsU and Y, the representative string for sub-dictionary chosen by U.
Output : The new states of U and Y. The original state of U iswy and of Y iSwy.
Method
If ((wy modN) D) and (w modN) (D) Then (* U& Y areininterna states *)
wy=wy +1

wy =wy +1
Else (* UorY isinaboundary state *)
If (wymodN) (D) Then (* Y isin aboundary state *)
wy=wy +1
BestSmilarity ;=1

For all the sub-dictionaries k other than the one chosen by U Do
Yk := Representative string for current sub-dictionary

If SM(U,Y ) < BestSimilarity Then
BestSimilarity := Sm(U,Y)

BestSubDictionary := k (* Sub-dictionary k is superior *)
Endlf
EndFor
Xgy := String Closest to boundary in sub-dictionary BestSubDictionary
temp = wy (* Storethe state of U *)
wy = (wgy DIV N) * N (*Move U to same group as Xg,*)
wg, = temp (*Move Xg,, to old state of U *)
Else
If (wy mod N) (D) Then (* U isaboundary state *)
wy =wy +1
Endlf
BestSimilarity ;=1
For all the sub-dictionaries k other than the one chosen by U Do
Yk := Representative string for current sub-dictionary
If Sm(Y,Y ) < BestSimilarity Then
BestSmilarity := Sim(Y,Y\)
BestSubDictionary := k (* Sub-dictionary k is superior *)
Endlf
EndFor
Xgy := String Closest to boundary in sub-dictionary BestSubDictionary
temp == wy (* Storethe state of Y *)
wy = (wgy DIV N) * N (*MoveY to same group as Xg,*)
wg, = temp (*Move Xg, toold state of Y *)
Endlf
Endlf

END PROCEDURE PenalizeDissimilar Strings
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Figurellb: Penalty transitions for the 2N-State STLA -- PenalizeSmilarSrings Mode. Here
Xy and X, are similar but located in the distinct sub-dictionaries. However of them
(Xy) isin aboundary state.
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Figurellla: Penalty transitions for the 2N-State STLA -- PenalizeDissmilarSrings Mode.
Here U is dissmilar to Y, the best representative of its current sub-dictionary.
Neither of them isin aboundary state.
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Figurelllb: Penalty transitions for the 2N-State STLA -- PenalizeDissmilarSrings Mode.
Here U isdissmilar to Y, the best representative of its current sub-dictionary and
is in the boundary state. Yg, is the best representative of the sub-dictionary to
which U should be migrated. Xg,, the closest word here, and U swap sub-

dictionaries.
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